Directed Graph Neural Networks with Node Diversity
To get up and running with the project, you need to first set up your environment and install the necessary dependencies. This guide will walk you through the process step by step.
The project is designed to run on Python 3.10.
Once the environment is activated, install the required packages:
conda install pytorch==2.0.1 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install pyg pytorch-sparse -c pyg
pip install ogb==1.3.6
pip install pytorch_lightning==2.0.2
pip install gdown==4.7.1
conda install pytorch==2.0.1 -c pytorch
/miniconda3/envs/your_env/lib/python3.10/site-packages/torch_geometric/io/npz.py
We providee the node classification and link prediction running experiments here,
To reproduce the best NDDGNN results on node classification (Table 2 in our paper), use the following command:
python -m src.run --dataset cora_ml --use_best_hyperparams --num_runs 10
python -m src_large.run --dataset arxiv-year --use_best_hyperparams --num_runs 10
for more datasets, see bash bash.sh
For the directed graph link prediction(Table 3 in our paper), use the following command:
python -m src.run_link --dataset chameleon --use_best_hyperparams --num_runs 10
The --dataset
parameter specifies the dataset to be used. Replace chameleon
with the name of the dataset you want to use.