-
Notifications
You must be signed in to change notification settings - Fork 200
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enabled DETR (Object Detection) model (#1046)
Co-authored-by: Iman Gohari <[email protected]>
- Loading branch information
1 parent
fed86f4
commit a246660
Showing
11 changed files
with
318 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
<!--- | ||
Copyright 2024 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
# Object Detection Example | ||
|
||
This folder contains an example script which demonstrates the usage of DETR to run object detection task on Gaudi platform. | ||
|
||
## Single-HPU inference | ||
|
||
```bash | ||
python3 run_example.py \ | ||
--model_name_or_path facebook/detr-resnet-101 \ | ||
--image_path "http://images.cocodataset.org/val2017/000000039769.jpg" \ | ||
--use_hpu_graphs \ | ||
--bf16 \ | ||
--print_result | ||
``` | ||
|
||
Models that have been validated: | ||
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) | ||
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
#!/usr/bin/env python | ||
# coding=utf-8 | ||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
|
||
# Copied from https://huggingface.co/docs/transformers/model_doc/owlvit | ||
|
||
import argparse | ||
import time | ||
|
||
import habana_frameworks.torch as ht | ||
import requests | ||
import torch | ||
from PIL import Image | ||
from transformers import AutoProcessor, DetrForObjectDetection | ||
|
||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model_name_or_path", | ||
default="facebook/detr-resnet-101", | ||
type=str, | ||
help="Path of the pre-trained model", | ||
) | ||
parser.add_argument( | ||
"--image_path", | ||
default="http://images.cocodataset.org/val2017/000000039769.jpg", | ||
type=str, | ||
help='Path of the input image. Should be a single string (eg: --image_path "URL")', | ||
) | ||
parser.add_argument( | ||
"--use_hpu_graphs", | ||
action="store_true", | ||
help="Whether to use HPU graphs or not. Using HPU graphs should give better latencies.", | ||
) | ||
parser.add_argument( | ||
"--bf16", | ||
action="store_true", | ||
help="Whether to use bf16 precision for object detection.", | ||
) | ||
parser.add_argument( | ||
"--detect_threshold", | ||
type=float, | ||
default=0.9, | ||
help="Detection threshold score (otherwise dismissed)", | ||
) | ||
parser.add_argument( | ||
"--print_result", | ||
action="store_true", | ||
help="Whether to print the detection results.", | ||
) | ||
|
||
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup iterations for benchmarking.") | ||
parser.add_argument( | ||
"--n_iterations", type=int, default=10, help="Number of inference iterations for benchmarking." | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
adapt_transformers_to_gaudi() | ||
|
||
# you can specify the revision tag if you don't want the timm dependency | ||
processor = AutoProcessor.from_pretrained("facebook/detr-resnet-101", revision="no_timm") | ||
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101", revision="no_timm") | ||
|
||
image = Image.open(requests.get(args.image_path, stream=True).raw) | ||
|
||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
model.to("hpu") | ||
|
||
if args.use_hpu_graphs: | ||
model = ht.hpu.wrap_in_hpu_graph(model) | ||
|
||
autocast = torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=args.bf16) | ||
|
||
with torch.no_grad(), autocast: | ||
for i in range(args.warmup): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
outputs = model(**inputs) | ||
torch.hpu.synchronize() | ||
|
||
total_model_time = 0 | ||
for i in range(args.n_iterations): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
model_start_time = time.time() | ||
outputs = model(**inputs) | ||
torch.hpu.synchronize() | ||
model_end_time = time.time() | ||
total_model_time = total_model_time + (model_end_time - model_start_time) | ||
|
||
if args.print_result: | ||
target_sizes = torch.tensor([image.size[::-1]]) | ||
results = processor.post_process_object_detection( | ||
outputs, target_sizes=target_sizes, threshold=args.detect_threshold | ||
)[0] | ||
|
||
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | ||
box = [round(i, 2) for i in box.tolist()] | ||
print( | ||
f"Detected {model.config.id2label[label.item()]} with confidence " | ||
f"{round(score.item(), 3)} at location {box}" | ||
) | ||
|
||
tot_stat = f"Total latency (ms): {str(total_model_time * 1000)} (for n_iterations={str(args.n_iterations)}) " | ||
avg_stat = f"Average latency (ms): {str(total_model_time * 1000 / args.n_iterations)} (per iteration) " | ||
separator = "-" * max(len(tot_stat), len(avg_stat)) | ||
print() | ||
print("Stats:") | ||
print(separator) | ||
print(tot_stat) | ||
print(avg_stat) | ||
print(separator) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .modeling_detr import ( | ||
gaudi_DetrConvModel_forward, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
def gaudi_DetrConvModel_forward(self, pixel_values, pixel_mask): | ||
""" | ||
Copied from modeling_detr: https://github.com/huggingface/transformers/blob/main/src/transformers/models/detr/modeling_detr.py#L398 | ||
The modications are: | ||
- Use CPU to calculate the position_embeddings and transfer back to HPU | ||
""" | ||
|
||
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples | ||
out = self.conv_encoder(pixel_values, pixel_mask) | ||
pos = [] | ||
self.position_embedding = self.position_embedding.to("cpu") | ||
|
||
for feature_map, mask in out: | ||
# position encoding | ||
feature_map = feature_map.to("cpu") | ||
mask = mask.to("cpu") | ||
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype).to("hpu")) | ||
|
||
return out, pos |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -47,6 +47,7 @@ | |
"safetensors", | ||
"pytest < 8.0.0", | ||
"torchsde", | ||
"timm", | ||
] | ||
|
||
QUALITY_REQUIRES = [ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import time | ||
from unittest import TestCase | ||
|
||
import habana_frameworks.torch as ht | ||
import numpy as np | ||
import requests | ||
import torch | ||
from PIL import Image | ||
from transformers import AutoProcessor, DetrForObjectDetection | ||
|
||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi | ||
|
||
from .test_examples import TIME_PERF_FACTOR | ||
|
||
|
||
adapt_transformers_to_gaudi() | ||
|
||
if os.environ.get("GAUDI2_CI", "0") == "1": | ||
# Gaudi2 CI baselines | ||
LATENCY_DETR_BF16_GRAPH_BASELINE = 7.0 | ||
else: | ||
# Gaudi1 CI baselines | ||
LATENCY_DETR_BF16_GRAPH_BASELINE = 14.5 | ||
|
||
|
||
class GaudiDETRTester(TestCase): | ||
""" | ||
Tests for Object Detection - DETR | ||
""" | ||
|
||
def prepare_model_and_processor(self): | ||
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101").to("hpu") | ||
model = model.eval() | ||
processor = AutoProcessor.from_pretrained("facebook/detr-resnet-101") | ||
return model, processor | ||
|
||
def prepare_data(self): | ||
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) | ||
return image | ||
|
||
def test_inference_default(self): | ||
model, processor = self.prepare_model_and_processor() | ||
image = self.prepare_data() | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
outputs = model(**inputs) | ||
target_sizes = torch.Tensor([image.size[::-1]]) | ||
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | ||
boxes = results["boxes"] | ||
self.assertEqual(len(boxes), 5) | ||
expected_location = np.array([344.0622, 24.8543, 640.3398, 373.7401]) | ||
self.assertLess(np.abs(boxes[0].cpu().detach().numpy() - expected_location).max(), 1) | ||
|
||
def test_inference_autocast(self): | ||
model, processor = self.prepare_model_and_processor() | ||
image = self.prepare_data() | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
|
||
with torch.autocast(device_type="hpu", dtype=torch.bfloat16): # Autocast BF16 | ||
outputs = model(**inputs) | ||
target_sizes = torch.Tensor([image.size[::-1]]) | ||
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | ||
boxes = results["boxes"] | ||
self.assertEqual(len(boxes), 5) | ||
expected_location = np.array([342, 25.25, 636, 376]) | ||
self.assertLess(np.abs(boxes[0].to(torch.float32).cpu().detach().numpy() - expected_location).max(), 5) | ||
|
||
def test_inference_hpu_graphs(self): | ||
model, processor = self.prepare_model_and_processor() | ||
image = self.prepare_data() | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
|
||
model = ht.hpu.wrap_in_hpu_graph(model) # Apply graph | ||
|
||
outputs = model(**inputs) | ||
target_sizes = torch.Tensor([image.size[::-1]]) | ||
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=0.1) | ||
boxes = results[0]["boxes"] | ||
self.assertEqual(len(boxes), 5) | ||
expected_location = np.array([344.0622, 24.8543, 640.3398, 373.7401]) | ||
self.assertLess(np.abs(boxes[0].to(torch.float32).cpu().detach().numpy() - expected_location).max(), 1) | ||
|
||
def test_no_latency_regression_autocast(self): | ||
warmup = 3 | ||
iterations = 10 | ||
|
||
model, processor = self.prepare_model_and_processor() | ||
image = self.prepare_data() | ||
|
||
model = ht.hpu.wrap_in_hpu_graph(model) | ||
|
||
with torch.no_grad(), torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=True): | ||
for i in range(warmup): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
_ = model(**inputs) | ||
torch.hpu.synchronize() | ||
|
||
total_model_time = 0 | ||
for i in range(iterations): | ||
inputs = processor(images=image, return_tensors="pt").to("hpu") | ||
model_start_time = time.time() | ||
_ = model(**inputs) | ||
torch.hpu.synchronize() | ||
model_end_time = time.time() | ||
total_model_time = total_model_time + (model_end_time - model_start_time) | ||
|
||
latency = total_model_time * 1000 / iterations # in terms of ms | ||
self.assertLessEqual(latency, TIME_PERF_FACTOR * LATENCY_DETR_BF16_GRAPH_BASELINE) |