-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/icanSeeo/i-can-see into clean
- Loading branch information
Showing
7 changed files
with
286 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# name: Python application | ||
|
||
# on: | ||
# push: | ||
# branches: [ "CI/CD" ] | ||
# pull_request: | ||
# branches: [ "CI/CD" ] | ||
|
||
# permissions: | ||
# contents: read | ||
|
||
# jobs: | ||
# build: | ||
|
||
# runs-on: ubuntu-latest | ||
|
||
# steps: | ||
# - uses: actions/checkout@v3 | ||
# - name: Set up Python 3.10 | ||
# uses: actions/setup-python@v3 | ||
# with: | ||
# python-version: "3.10" | ||
# - name: Install dependencies | ||
# run: | | ||
# python -m pip install --upgrade pip | ||
# pip install flake8 pytest | ||
# pip install torch torchvision | ||
# - name: Lint with flake8 | ||
# run: | | ||
# # stop the build if there are Python syntax errors or undefined names | ||
# flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics | ||
# # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide | ||
# flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics | ||
# - name: Test with pytest | ||
# run: | | ||
# cd test | ||
# pytest -v | ||
# - name: Build Docker image | ||
# run: docker build -t my-python-app . | ||
|
||
# - name: Run tests in Docker container | ||
# run: docker run my-python-app |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
FROM python:3.10 | ||
WORKDIR /app | ||
COPY . /app | ||
RUN pip install --upgrade pip && pip install flake8 pytest torch torchvision | ||
CMD ["python", "-m", "pytest", "-v", "./test/test_resnet.py"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,29 @@ | ||
# i-can-see | ||
Attention based CNN | ||
# 🔍 i-can-see | ||
👁🗨 Attention based CNN | ||
|
||
## 📸 Index | ||
<details open="open"> | ||
<ol> | ||
<li> 프로젝트 소개</li> | ||
<li> 기술 스택</li> | ||
<li> 팀원 정보</li> | ||
<li> Doc</li> | ||
</ol> | ||
</details> | ||
|
||
## 🐧 프로젝트 소개 | ||
<ul> | ||
<li>Attention 기반 CNN 활용한 이미지 Blur 및 Noise 완화</li> | ||
<ul> | ||
<li>Attention~!</li> | ||
</ul> | ||
</ul> | ||
|
||
## Team Member | ||
> BigData Project | ||
| Name | Role | Contect | | ||
|:---:|:---:|:---:| | ||
|강성준| slave, 블록체인 개발자 | [email protected] | | ||
|조준영| AI 개발자, 웹디자이너 | [email protected] | | ||
|김동현| slave, 백엔드 개발자 | [email protected] | |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
def test_training(): | ||
# 데이터 전처리 | ||
transform = transforms.Compose([ | ||
transforms.Resize((32, 32)), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
|
||
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) | ||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) | ||
|
||
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) | ||
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) | ||
|
||
# ResNet 모델 정의 | ||
resnet = torchvision.models.resnet18(pretrained=True) | ||
resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3) | ||
num_ftrs = resnet.fc.in_features | ||
resnet.fc = nn.Linear(num_ftrs, 10) | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
resnet.to(device) | ||
|
||
# 손실 함수 및 최적화 함수 | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.SGD(resnet.parameters(), lr=0.01) | ||
|
||
# 모델 학습 | ||
num_epochs = 2 | ||
|
||
for epoch in range(num_epochs): | ||
running_loss = 0.0 | ||
resnet.train() | ||
|
||
for i, (inputs, labels) in enumerate(trainloader): | ||
inputs, labels = inputs.to(device), labels.to(device) | ||
|
||
optimizer.zero_grad() | ||
|
||
outputs = resnet(inputs) | ||
loss = criterion(outputs, labels) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
running_loss += loss.item() | ||
|
||
|
||
correct = 0 | ||
total = 0 | ||
resnet.eval() | ||
|
||
with torch.no_grad(): | ||
for data in testloader: | ||
images, labels = data | ||
images, labels = images.to(device), labels.to(device) | ||
outputs = resnet(images) | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum().item() | ||
|
||
|
||
assert correct / total >= 0.1, f"Accuracy: {100 * correct / total}%" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
def test_training(): | ||
# 데이터 전처리 | ||
transform = transforms.Compose([ | ||
transforms.Resize((32, 32)), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
|
||
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) | ||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) | ||
|
||
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) | ||
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) | ||
|
||
# ResNet 모델 정의 | ||
resnet = torchvision.models.resnet18(pretrained=True) | ||
resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3) | ||
num_ftrs = resnet.fc.in_features | ||
resnet.fc = nn.Linear(num_ftrs, 10) | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
resnet.to(device) | ||
|
||
# 손실 함수 및 최적화 함수 | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.SGD(resnet.parameters(), lr=0.01) | ||
|
||
# 모델 학습 | ||
num_epochs = 2 | ||
|
||
for epoch in range(num_epochs): | ||
running_loss = 0.0 | ||
resnet.train() | ||
|
||
for i, (inputs, labels) in enumerate(trainloader): | ||
inputs, labels = inputs.to(device), labels.to(device) | ||
|
||
optimizer.zero_grad() | ||
|
||
outputs = resnet(inputs) | ||
loss = criterion(outputs, labels) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
running_loss += loss.item() | ||
|
||
|
||
correct = 0 | ||
total = 0 | ||
resnet.eval() | ||
|
||
with torch.no_grad(): | ||
for data in testloader: | ||
images, labels = data | ||
images, labels = images.to(device), labels.to(device) | ||
outputs = resnet(images) | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum().item() | ||
|
||
|
||
assert correct / total >= 0.1, f"Accuracy: {100 * correct / total}%" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
|
||
def test_training(): | ||
# 데이터 전처리 | ||
transform = transforms.Compose([ | ||
transforms.Resize((32, 32)), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
|
||
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) | ||
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) | ||
|
||
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) | ||
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) | ||
|
||
# ResNet 모델 정의 | ||
resnet = torchvision.models.resnet18(pretrained=True) | ||
resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3) | ||
num_ftrs = resnet.fc.in_features | ||
resnet.fc = nn.Linear(num_ftrs, 10) | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
resnet.to(device) | ||
|
||
# 손실 함수 및 최적화 함수 | ||
criterion = nn.CrossEntropyLoss() | ||
optimizer = optim.SGD(resnet.parameters(), lr=0.01) | ||
|
||
# 모델 학습 | ||
num_epochs = 5 | ||
|
||
for epoch in range(num_epochs): | ||
running_loss = 0.0 | ||
resnet.train() | ||
|
||
for i, (inputs, labels) in enumerate(trainloader): | ||
inputs, labels = inputs.to(device), labels.to(device) | ||
|
||
optimizer.zero_grad() | ||
|
||
outputs = resnet(inputs) | ||
loss = criterion(outputs, labels) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
running_loss += loss.item() | ||
|
||
|
||
correct = 0 | ||
total = 0 | ||
resnet.eval() | ||
|
||
with torch.no_grad(): | ||
for data in testloader: | ||
images, labels = data | ||
images, labels = images.to(device), labels.to(device) | ||
outputs = resnet(images) | ||
_, predicted = torch.max(outputs.data, 1) | ||
total += labels.size(0) | ||
correct += (predicted == labels).sum().item() | ||
|
||
|
||
assert correct / total >= 0.9, f"Accuracy: {100 * correct / total}%" |