Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sbachmei/mic 5668/bugfix handle empty years for means #387

Merged
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 13 additions & 14 deletions src/vivarium_inputs/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,8 +176,8 @@ def get_raw_incidence_rate(
data = utilities.filter_data_by_restrictions(
data, restrictions_entity, "yld", utility_data.get_age_group_ids()
)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In multiple places throughout this PR you'll see I moved the filtering of columns prior to the normalizing. I do this b/c the normalizing includes various groupbys and filtering beforehand provides a very large speedup

return data


Expand All @@ -197,8 +197,8 @@ def get_prevalence(
data = utilities.filter_data_by_restrictions(
data, restrictions_entity, "yld", utility_data.get_age_group_ids()
)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
return data


Expand Down Expand Up @@ -267,13 +267,13 @@ def get_disability_weight(
data = extract.extract_data(
entity, "disability_weight", location_id, years, data_type
)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns)

cause = [c for c in causes if c.sequelae and entity in c.sequelae][0]
data = utilities.clear_disability_weight_outside_restrictions(
data, cause, 0.0, utility_data.get_age_group_ids()
)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
except (IndexError, DataDoesNotExistError):
logger.warning(
f"{entity.name.capitalize()} has no disability weight data. All values will be 0."
Expand All @@ -300,8 +300,8 @@ def get_remission_rate(
data = utilities.filter_data_by_restrictions(
data, entity, "yld", utility_data.get_age_group_ids()
)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
return data


Expand Down Expand Up @@ -381,8 +381,8 @@ def get_deaths(
data = utilities.filter_data_by_restrictions(
data, entity, "yll", utility_data.get_age_group_ids()
)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
return data


Expand Down Expand Up @@ -413,6 +413,8 @@ def get_exposure(
data, entity, "outer", utility_data.get_age_group_ids()
)

data = data.filter(DEMOGRAPHIC_COLUMNS + value_columns + ["parameter"])

if entity.distribution in ["dichotomous", "ordered_polytomous", "unordered_polytomous"]:
tmrel_cat = utility_data.get_tmrel_category(entity)
exposed = data[data.parameter != tmrel_cat]
Expand All @@ -437,7 +439,6 @@ def get_exposure(
)
else:
data = utilities.normalize(data, value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + value_columns + ["parameter"])
return data


Expand All @@ -462,8 +463,8 @@ def get_exposure_standard_deviation(
valid_age_groups = utilities.get_exposure_and_restriction_ages(exposure, entity)
data = data[data.age_group_id.isin(valid_age_groups)]

data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
return data


Expand Down Expand Up @@ -493,6 +494,7 @@ def get_exposure_distribution_weights(
copied["age_group_id"] = age_id
df.append(copied)
data = pd.concat(df)
data = data.filter(DEMOGRAPHIC_COLUMNS + DISTRIBUTION_COLUMNS)
data = utilities.normalize(data, DISTRIBUTION_COLUMNS, fill_value=0)
if years != "all":
if years:
Expand All @@ -501,7 +503,6 @@ def get_exposure_distribution_weights(
else:
most_recent_year = utility_data.get_most_recent_year()
data = data.query(f"year_id=={most_recent_year}")
data = data.filter(DEMOGRAPHIC_COLUMNS + DISTRIBUTION_COLUMNS)
data = utilities.wide_to_long(data, DISTRIBUTION_COLUMNS, var_name="parameter")
return data

Expand All @@ -512,7 +513,6 @@ def get_relative_risk(
years: int | str | list[int] | None,
data_type: utilities.DataType,
) -> pd.DataFrame:

if data_type.type != "draws":
raise utilities.DataTypeNotImplementedError(
f"Data type(s) {data_type.type} are not supported for this function."
Expand All @@ -525,7 +525,6 @@ def get_relative_risk(
)

data = extract.extract_data(entity, "relative_risk", location_id, years, data_type)

# FIXME: we don't currently support yll-only causes so I'm dropping them because the data in some cases is
# very messed up, with mort = morb = 1 (e.g., aortic aneurysm in the RR data for high systolic bp) -
# 2/8/19 K.W.
Expand Down Expand Up @@ -629,14 +628,14 @@ def get_population_attributable_fraction(
data["measure_id"] == MEASURES["YLLs"], "affected_measure"
] = "excess_mortality_rate"
data.loc[data["measure_id"] == MEASURES["YLDs"], "affected_measure"] = "incidence_rate"
data = data.filter(
DEMOGRAPHIC_COLUMNS + ["affected_entity", "affected_measure"] + value_columns
)
data = (
data.groupby(["affected_entity", "affected_measure"])
.apply(utilities.normalize, cols_to_fill=value_columns, fill_value=0)
.reset_index(drop=True)
)
data = data.filter(
DEMOGRAPHIC_COLUMNS + ["affected_entity", "affected_measure"] + value_columns
)
return data


Expand Down Expand Up @@ -674,8 +673,8 @@ def get_utilization_rate(
data_type: utilities.DataType,
) -> pd.DataFrame:
data = extract.extract_data(entity, "utilization_rate", location_id, years, data_type)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
data = data.filter(DEMOGRAPHIC_COLUMNS + data_type.value_columns)
data = utilities.normalize(data, data_type.value_columns, fill_value=0)
return data


Expand Down
13 changes: 10 additions & 3 deletions src/vivarium_inputs/extract.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ def extract_data(

validation.check_metadata(entity, measure)

year_id = _get_year_id(years)
year_id = _get_year_id(years, data_type)

try:
main_extractor, additional_extractors = extractors[measure]
Expand Down Expand Up @@ -146,6 +146,10 @@ def extract_data(
extra_draw_cols = [col for col in existing_draw_cols if col not in DRAW_COLUMNS]
data = data.drop(columns=extra_draw_cols, errors="ignore")

# drop get_outputs data earlier than the estimation years
if data_type.type == "means":
data = data.loc[data["year_id"] >= min(utility_data.get_estimation_years())]

if validate:
additional_data = {
name: extractor(entity, location_id, year_id, data_type)
Expand All @@ -167,11 +171,14 @@ def extract_data(
####################


def _get_year_id(years):
def _get_year_id(years, data_type):
if years is None: # default to most recent year
year_id = utility_data.get_most_recent_year()
elif years == "all":
year_id = None
if data_type.type == "draws":
year_id = None
else: # means
year_id = "full"
else:
year_id = years if isinstance(years, list) else [years]
estimation_years = utility_data.get_estimation_years()
Expand Down
5 changes: 3 additions & 2 deletions src/vivarium_inputs/validation/raw.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,9 @@ class RawValidationContext:
def __init__(self, location_id, **additional_data):
self.context_data = {"location_id": location_id}
self.context_data.update(additional_data)

if "estimation_years" not in self.context_data:
if "estimation_years" not in self.context_data or self.context_data[
"estimation_years"
] == ["full"]:
self.context_data["estimation_years"] = utility_data.get_estimation_years()
if "age_group_ids" not in self.context_data:
self.context_data["age_group_ids"] = utility_data.get_age_group_ids()
Expand Down
2 changes: 1 addition & 1 deletion tests/e2e/test_get_measure.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,7 +275,7 @@ def test_get_measure_risklike(
and not mock_gbd
and data_type == "draws"
):
pytest.skip("FIXME: [mic-5543] continuous rrs cannot validate")
pytest.skip("FIXME: [mic-5542] continuous rrs cannot validate")

# Handle not implemented
is_unimplemented = isinstance(data_type, list) or data_type == "means"
Expand Down
Loading
Loading