Skip to content

Commit

Permalink
Tap
Browse files Browse the repository at this point in the history
  • Loading branch information
imbrem committed Sep 5, 2024
1 parent 12ed655 commit 2c0dfd3
Show file tree
Hide file tree
Showing 6 changed files with 1,875 additions and 1,853 deletions.
11 changes: 6 additions & 5 deletions DeBruijnSSA/BinSyntax/Syntax/Fv/Subst.lean
Original file line number Diff line number Diff line change
Expand Up @@ -150,11 +150,12 @@ theorem Term.Subst.eqOn_lift_iff {σ σ' : Term.Subst φ} {s : Set ℕ}
· rw [Set.mem_liftFv] at hn
have h := h hn
simp only [lift_succ] at h
sorry
· sorry
exact Term.wk0_injective h
· cases n with | zero => rfl | _ => simp [Subst.lift, h ((Set.mem_liftFv _ _).mpr hn)]

theorem Term.Subst.eqOn_liftn_iff {σ σ' : Term.Subst φ} {s : Set ℕ}
: s.EqOn (σ.liftn n) (σ'.liftn n) ↔ (s.liftnFv n).EqOn σ σ' := sorry
: s.EqOn (σ.liftn n) (σ'.liftn n) ↔ (s.liftnFv n).EqOn σ σ' := by
induction n generalizing σ σ' s <;> simp [Subst.liftn_succ', Set.liftnFv_succ', eqOn_lift_iff, *]

theorem Term.subst_eq_iff {t : Term φ} {σ σ' : Subst φ}
: t.subst σ = t.subst σ' ↔ t.fvs.EqOn σ σ' := by induction t generalizing σ σ' with
Expand Down Expand Up @@ -219,8 +220,8 @@ theorem Region.vsubst_eqOn_fvs {r : Region φ} {σ σ' : Term.Subst φ} (h : r.f
theorem Region.vsubst_eqOn_fvi {r : Region φ} {σ σ' : Term.Subst φ} (h : (Set.Iio r.fvi).EqOn σ σ')
: r.vsubst σ = r.vsubst σ' := r.vsubst_eqOn_fvs (h.mono r.fvs_fvi)

theorem Region.lsubst_eqOn_fls {r : Region φ} {σ σ' : Subst φ} (h : r.fls.EqOn σ σ')
: r.lsubst σ = r.lsubst σ' := by sorry
-- theorem Region.lsubst_eqOn_fls {r : Region φ} {σ σ' : Subst φ} (h : r.fls.EqOn σ σ')
-- : r.lsubst σ = r.lsubst σ' := by sorry

-- TODO: {Terminator, Region}.Subst.{fv, fl}

Expand Down
Loading

0 comments on commit 2c0dfd3

Please sign in to comment.