Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Marcosertoli/satakihino #263

Merged
merged 2 commits into from
Jul 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions indica/models/plasma.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,7 +350,6 @@ def initialize_variables(self, tstart: float, tend: float, dt: float):
self._pressure_th = assign_data(
self.data2d, ("pressure", "thermal"), "Pa $m^{-3}$"
)
self._ion_density = assign_data(self.data3d, ("density", "ion"), "$m^{-3}$")
self._pressure_tot = assign_data(
self.data2d, ("pressure", "total"), "Pa $m^{-3}$"
)
Expand Down Expand Up @@ -598,7 +597,7 @@ def wp(self):

@property
def fz(self):
return self.Fz()
return self.calc_fz() # self.Fz()

def calc_fz(self):
for elem in self.elements:
Expand All @@ -621,7 +620,7 @@ def calc_fz(self):

@property
def zeff(self):
return self.Zeff()
return self.calc_zeff() # Zeff()

def calc_zeff(self):
electron_density = self.electron_density
Expand All @@ -636,7 +635,7 @@ def calc_zeff(self):

@property
def ion_density(self):
return self.Ion_density()
return self.calc_ion_density() # self.Ion_density()

def calc_ion_density(self):
meanz = self.meanz
Expand All @@ -656,7 +655,7 @@ def calc_ion_density(self):

@property
def lz_tot(self):
return self.Lz_tot()
return self.calc_lz_tot() # self.Lz_tot()

def calc_lz_tot(self):
fz = self.fz
Expand All @@ -681,7 +680,7 @@ def calc_lz_tot(self):

@property
def lz_sxr(self):
return self.Lz_sxr()
return self.calc_lz_sxr() # self.Lz_sxr()

def calc_lz_sxr(self):
fz = self.fz
Expand All @@ -708,7 +707,7 @@ def calc_lz_sxr(self):

@property
def total_radiation(self):
return self.Total_radiation()
return self.calc_total_radiation() # self.Total_radiation()

def calc_total_radiation(self):
lz_tot = self.lz_tot
Expand All @@ -728,7 +727,7 @@ def calc_total_radiation(self):

@property
def sxr_radiation(self):
return self.Sxr_radiation()
return self.calc_sxr_radiation() # self.Sxr_radiation()

def calc_sxr_radiation(self):
if not hasattr(self, "power_loss_sxr"):
Expand Down Expand Up @@ -1238,6 +1237,7 @@ def __init__(self, operator: Callable, dependencies: list, verbose: bool = False

@lru_cache()
def __call__(self):
print("Recalculating")
if self.verbose:
print("Recalculating")
return self.operator()
Expand Down
89 changes: 43 additions & 46 deletions indica/workflows/example_bayes_opt.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@
from indica.readers.read_st40 import ReadST40
from indica.workflows.bayes_workflow import plot_bayes_result
from indica.workflows.bayes_workflow import sample_with_autocorr
import indica.readers.read_st40 as read_st40
from indica.models.diode_filters import BremsstrahlungDiode

# TODO: allow conditional prior usage even when only
# one param is being optimisied i.e. 1 is constant
Expand All @@ -34,8 +32,8 @@ def run(
tend=tend,
dt=dt,
main_ion="h",
impurities=("c",), #impurities: tuple = ("c", "ar"), impurity_concentration: tuple = (0.02, 0.001),
impurity_concentration=(0.2,),
impurities=("ar",),
impurity_concentration=(0.001,),
full_run=False,
n_rad=10,
)
Expand All @@ -50,27 +48,25 @@ def run(
"impurity_density": plasma.Nimp_prof.yspl,
}

ST40 = read_st40.ReadST40(pulse)
ST40(["pi"])

data_to_read=ST40.binned_data["pi"]["spectra"]
los_transform = data_to_read.transform
data_to_read.transform.set_equilibrium(data_to_read.transform.equilibrium)
pi = BremsstrahlungDiode(name="pi", channel_mask=slice(18, 28))
pi.set_los_transform(los_transform)

pi.plasma = plasma
pi_data = pi()["brightness"]

#from indica.models.background_fit import Bremsstrahlung
#pi_data = Bremsstrahlung(pulse)[1]
#data_measured = Bremsstrahlung(pulse)[1].sel(channel=channels)
#data_modelled = example_run(pulse)[2]["brightness"].sel(channel=channels)
ST40 = ReadST40(pulse, tstart=tstart, tend=tend)
ST40(["xrcs", "smmh1"])

# Initialise Diagnostic Models
los_transform = ST40.binned_data["smmh1"]["ne"].transform
smmh1 = Interferometry(name="smmh1")
smmh1.set_los_transform(los_transform)
smmh1.plasma = plasma
los_transform = ST40.binned_data["xrcs"]["te_kw"].transform
xrcs = Helike_spectroscopy(name="xrcs", window_masks=[slice(0.3945, 0.3962)])
xrcs.set_los_transform(los_transform)
xrcs.plasma = plasma

flat_data = {}
flat_data["pi.brightness"] = (
pi_data.expand_dims(dim={"t": [plasma.time_to_calculate]})
flat_data["smmh1.ne"] = (
smmh1().pop("ne").expand_dims(dim={"t": [plasma.time_to_calculate]})
)
flat_data["xrcs.spectra"] = (
xrcs().pop("spectra").expand_dims(dim={"t": [plasma.time_to_calculate]})
)

priors = {
Expand All @@ -93,34 +89,36 @@ def run(
"Ti_prof.y0": get_uniform(2000, 10000),
"Ti_prof.peaking": get_uniform(1, 4),
}

# Setup Optimiser
param_names = [
"Ne_prof.y0",
# "Ne_prof.y1",
# "Ne_prof.peaking",
"Nimp_prof.y0",
# "Nimp_prof.y1",
#"Nimp_prof.peaking",
# "Nimp_prof.peaking",
"Te_prof.y0",
# "Te_prof.peaking",
# "Te_prof.peaking",
"Ti_prof.y0",
# "Ti_prof.peaking",
]

bm = BayesModels(
plasma=plasma,
data=flat_data,
diagnostic_models=[pi],
diagnostic_models=[smmh1, xrcs],
quant_to_optimise=[
"pi.brightness",
"smmh1.ne",
"xrcs.spectra",
],
priors=priors,
)

ndim = param_names.__len__()
nwalkers = 50
nwalkers = 20
start_points = bm.sample_from_priors(param_names, size=nwalkers)
move = [(emcee.moves.StretchMove(), 1.0), (emcee.moves.DEMove(), 0.0)]

sampler = emcee.EnsembleSampler(
nwalkers,
ndim,
Expand All @@ -143,22 +141,26 @@ def run(
)
for blob_name in blob_names
}

samples = sampler.get_chain(flat=True)

prior_samples = bm.sample_from_priors(param_names, size=int(1e5))

# TODO make sure xrcs bckc doesn't have dims t and channels
# save result
result = {
"blobs": blob_dict,
"diag_data": flat_data,
"samples": samples,
"prior_samples": prior_samples,
"param_names": param_names,
"phantom_profiles": phantom_profiles,
"plasma": plasma,
"autocorr": autocorr,
}
"blobs": blob_dict,
"diag_data": flat_data,
"samples": samples,
"prior_samples": prior_samples,
"param_names": param_names,
"phantom_profiles": phantom_profiles,
"plasma": plasma,
"autocorr": autocorr,
}
print(sampler.acceptance_fraction.sum())
plot_bayes_result(**result, figheader=result_path)



if __name__ == "__main__":
params = {
"Ne_prof.y0": 5e19,
Expand All @@ -175,9 +177,4 @@ def run(
"Ti_prof.y0": 5000,
"Ti_prof.peaking": 2,
}
from sys import platform
if platform == "linux" or platform == "linux2":
pathname="./plots/"
elif platform == "win32":
pathname="C:\\Users\\Aleksandra.Alieva\\Desktop\\Plots\\New\\"
run(10607, params, 200, pathname, burn_in=0)
run(10009, params, 10, "./results/test/", burn_in=0)
Loading