Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SDK for Assistant #2266

Merged
merged 1 commit into from
Sep 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
293 changes: 293 additions & 0 deletions api/apps/sdk/assistant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request

from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, token_required
from api.utils.api_utils import get_json_result


@manager.route('/save', methods=['POST'])
@token_required
def save(tenant_id):
req = request.json
id = req.get("id")
# dataset
if req.get("knowledgebases") == []:
return get_data_error_result(retmsg="knowledgebases can not be empty list")
kb_list = []
if req.get("knowledgebases"):
for kb in req.get("knowledgebases"):
if not kb["id"]:
return get_data_error_result(retmsg="knowledgebase needs id")
if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
return get_data_error_result(retmsg="you do not own the knowledgebase")
if not DocumentService.query(kb_id=kb["id"]):
return get_data_error_result(retmsg="There is a invalid knowledgebase")
kb_list.append(kb["id"])
req["kb_ids"] = kb_list
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_data_error_result(retmsg="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
prompt[new_key] = prompt.pop(old_key)
for key in key_list:
if key in prompt:
req[key] = prompt.pop(key)
req["prompt_config"] = req.pop("prompt")
# create
if not id:
# dataset
if not kb_list:
return get_data_error_result(retmsg="knowledgebase is required!")
# init
req["id"] = get_uuid()
req["description"] = req.get("description", "A helpful Assistant")
req["icon"] = req.get("avatar", "")
req["top_n"] = req.get("top_n", 6)
req["top_k"] = req.get("top_k", 1024)
req["rerank_id"] = req.get("rerank_id", "")
req["llm_id"] = req.get("llm_id", tenant.llm_id)
if not req.get("name"):
return get_data_error_result(retmsg="name is required.")
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
# tenant_id
if req.get("tenant_id"):
return get_data_error_result(retmsg="tenant_id must not be provided.")
req["tenant_id"] = tenant_id
# prompt more parameter
default_prompt = {
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
以下是知识库:
{knowledge}
以上是知识库。""",
"prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"empty_response": "Sorry! 知识库中未找到相关内容!"
}
key_list_2 = ["system", "prologue", "parameters", "empty_response"]
if "prompt_config" not in req:
req['prompt_config'] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if not temp:
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_data_error_result(
retmsg="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_data_error_result(retmsg="Fail to new an assistant!")
# response
e, res = DialogService.get_by_id(req["id"])
if not e:
return get_data_error_result(retmsg="Fail to new an assistant!")
res = res.to_json()
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
del res["kb_ids"]
res["knowledgebases"] = req["knowledgebases"]
res["avatar"] = res.pop("icon")
return get_json_result(data=res)
else:
# authorization
if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
# prompt
e, res = DialogService.get_by_id(req["id"])
res = res.to_json()
if "name" in req:
if not req.get("name"):
return get_data_error_result(retmsg="name is not empty.")
if req["name"].lower() != res["name"].lower() \
and len(DialogService.query(name=req["name"], tenant_id=tenant_id,status=StatusEnum.VALID.value)) > 0:
return get_data_error_result(retmsg="Duplicated knowledgebase name in updating dataset.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
if p["optional"]:
continue
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
if "llm_setting" in req:
res["llm_setting"].update(req["llm_setting"])
req["prompt_config"] = res["prompt_config"]
req["llm_setting"] = res["llm_setting"]
# avatar
if "avatar" in req:
req["icon"] = req.pop("avatar")
assistant_id = req.pop("id")
if "knowledgebases" in req:
req.pop("knowledgebases")
if not DialogService.update_by_id(assistant_id, req):
return get_data_error_result(retmsg="Assistant not found!")
return get_json_result(data=True)


@manager.route('/delete', methods=['DELETE'])
@token_required
def delete(tenant_id):
req = request.args
if "id" not in req:
return get_data_error_result(retmsg="id is required")
id = req['id']
if not DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value):
return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)

temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(req["id"], temp_dict)
return get_json_result(data=True)


@manager.route('/get', methods=['GET'])
@token_required
def get(tenant_id):
req = request.args
if "id" in req:
id = req["id"]
ass = DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value)
if not ass:
return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
if "name" in req:
name = req["name"]
if ass[0].name != name:
return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
res=ass[0].to_json()
else:
if "name" in req:
name = req["name"]
ass = DialogService.query(name=name, tenant_id=tenant_id,status=StatusEnum.VALID.value)
if not ass:
return get_json_result(data=False, retmsg='You do not own the dataset.',retcode=RetCode.OPERATING_ERROR)
res=ass[0].to_json()
else:
return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["knowledgebases"] = kb_list
res["avatar"] = res.pop("icon")
return get_json_result(data=res)


@manager.route('/list', methods=['GET'])
@token_required
def list_assistants(tenant_id):
assts = DialogService.query(
tenant_id=tenant_id,
status=StatusEnum.VALID.value,
reverse=True,
order_by=DialogService.model.create_time)
assts = [d.to_dict() for d in assts]
list_assts=[]
renamed_dict = {}
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in assts:
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["knowledgebases"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_json_result(data=list_assts)
3 changes: 2 additions & 1 deletion sdk/python/ragflow/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@
__version__ = importlib.metadata.version("ragflow")

from .ragflow import RAGFlow
from .modules.dataset import DataSet
from .modules.dataset import DataSet
from .modules.chat_assistant import Assistant
56 changes: 56 additions & 0 deletions sdk/python/ragflow/modules/chat_assistant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
from .base import Base


class Assistant(Base):
def __init__(self, rag, res_dict):
self.id=""
self.name = "assistant"
self.avatar = "path/to/avatar"
self.knowledgebases = ["kb1"]
self.llm = Assistant.LLM(rag, {})
self.prompt = Assistant.Prompt(rag, {})
super().__init__(rag, res_dict)

class LLM(Base):
def __init__(self, rag, res_dict):
self.model_name = "deepseek-chat"
self.temperature = 0.1
self.top_p = 0.3
self.presence_penalty = 0.4
self.frequency_penalty = 0.7
self.max_tokens = 512
super().__init__(rag, res_dict)

class Prompt(Base):
def __init__(self, rag, res_dict):
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.7
self.top_n = 8
self.variables = [{"key": "knowledge", "optional": True}]
self.rerank_model = None
self.empty_response = None
self.opener = "Hi! I'm your assistant, what can I do for you?"
self.show_quote = True
self.prompt = (
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
super().__init__(rag, res_dict)

def save(self) -> bool:
res = self.post('/assistant/save',
{"id": self.id, "name": self.name, "avatar": self.avatar, "knowledgebases":self.knowledgebases,
"llm":self.llm.to_json(),"prompt":self.prompt.to_json()
})
res = res.json()
if res.get("retmsg") == "success": return True
raise Exception(res["retmsg"])

def delete(self) -> bool:
res = self.rm('/assistant/delete',
{"id": self.id})
res = res.json()
if res.get("retmsg") == "success": return True
raise Exception(res["retmsg"])
Loading