Skip to content

irfanrob/fallacy-template

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

We present Flee the Flaw (FtF), a dataset created for representing the structure of fallacious arguments. Our dataset consists of 400 instances in total (200 dev and 200 train) split between four target fallacy types (false dilemma, faulty generalization, fallacy of credibility, false causality) taken from the LOGIC[1] dataset. Each fallacy type in our dataset consists of 100 total instances split between both sets (i.e., 50 dev and 50 train).

Contents

  • ftf_dataset.csv: Our Flee the Flaw (FtF) dataset.
  • ftf_prompts: Folder containing the prompts that were used for the LLM experiments.
  • ftf_guidelines.pdf: The guidelines used for creating FtF.

ftf_dataset.csv columns

Below, we describe the columns in ftf_dataset.csv.

  • split: dev or train
  • no: Instance number.
  • input_text: Fallacious argument originally provided by LOGIC[1] dataset.
  • fallacy_type: Fallacy type for the given input_text: false dilemma, faulty generalization, fallacy of credibility, false causality.
  • a_annotator_1: Slot-filler (a) from the input_text selected by annotator 1 for their selected template_annotator_1.
  • a_annotator_2: Slot-filler (a) from the input_text selected by annotator 2 for their selected template_annotator_2.
  • a'_annotator_1: Slot-filler (a') from the input_text selected by annotator 1 for their selected template_annotator_1.
  • a'_annotator_2: Slot-filler (a') from the input_text selected by annotator 2 for their selected template_annotator_2.
  • c_annotator_1: Slot-filler (c) from the input_text selected by annotator 1 for their selected template_annotator_1.
  • c_annotator_2: Slot-filler (c) from the input_text selected by annotator 2 for their selected template_annotator_2.
  • c'_annotator_1: Slot-filler (c') from the input_text selected by annotator 1 for their selected template_annotator_1.
  • c'_annotator_2: Slot-filler (c') from the input_text selected by annotator 2 for their selected template_annotator_2.
  • x_annotator_1: Slot-filler (x) from the input_text selected by annotator 1 for their selected template_annotator_1.
  • x_annotator_2: Slot-filler (x) from the input_text selected by annotator 2 for their selected template_annotator_2.
  • template_annotator_1: Template (1-5) selected for the respective fallacy_type template set by annotator 1.
  • template_annotator_2: Template (1-5) selected for the respective fallacy_type template set by annotator 2.
  • is_arg_consequences_annotator_1: Parameter used to determine if the fallacious argument can be represented using Walton (2008)'s argument from consequence scheme. yes if template_annotator_1 is 1-4, else no
  • is_arg_consequences_annotator_2: Parameter used to determine if the fallacious argument can be represented using Walton (2008)'s argument from consequence scheme. yes if template_annotator_2 is 1-4, else no

References

[1] Zhijing Jin, Abhinav Lalwani, Tejas Vaidhya, Xiaoyu Shen, Yiwen Ding, Zhiheng Lyu, Mrinmaya Sachan, Rada Mihalcea, and Bernhard Schoelkopf. 2022. Logical fallacy detection. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 7180–7198, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published