Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code and documentation string cleanup #10

Open
wants to merge 15 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion csm_estimation_demo.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# -*- coding: utf-8 -*-

#%%
#Basic setup
from __future__ import division, print_function, absolute_import
import time
import numpy as np
from ismrmrdtools import simulation, coils, show
Expand Down
104 changes: 58 additions & 46 deletions generate_cartesian_shepp_logan_dataset.py
Original file line number Diff line number Diff line change
@@ -1,42 +1,46 @@
# coding: utf-8
import os
from __future__ import division, print_function, absolute_import
import ismrmrd
import ismrmrd.xsd
from ismrmrdtools import simulation, transform
import numpy as np
import argparse

def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2, repetitions=1, acceleration=1, noise_level=0.05):

def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2,
repetitions=1, acceleration=1, noise_level=0.05):

# Generate the phantom and coil sensitivity maps
phan = simulation.phantom(matrix_size)
csm = simulation.generate_birdcage_sensitivities(matrix_size, coils)
coil_images = np.tile(phan,(coils, 1, 1)) * csm
coil_images = np.tile(phan, (coils, 1, 1)) * csm

# Oversample if needed
if oversampling>1:
padding = (oversampling*phan.shape[1] - phan.shape[1])/2
phan = np.pad(phan,((0,0),(padding,padding)),mode='constant')
csm = np.pad(csm,((0,0),(0,0),(padding,padding)),mode='constant')
coil_images = np.pad(coil_images,((0,0),(0,0),(padding,padding)),mode='constant')
if oversampling > 1:
padding = (oversampling*phan.shape[1] - phan.shape[1]) // 2
phan = np.pad(phan, ((0, 0), (padding, padding)), mode='constant')
csm = np.pad(
csm, ((0, 0), (0, 0), (padding, padding)), mode='constant')
coil_images = np.pad(
coil_images, ((0, 0), (0, 0), (padding, padding)), mode='constant')

# The number of points in x,y,kx,ky
nx = matrix_size
ny = matrix_size
nkx = oversampling*nx
nky = ny

# Open the dataset
dset = ismrmrd.Dataset(filename, "dataset", create_if_needed=True)

# Create the XML header and write it to the file
header = ismrmrd.xsd.ismrmrdHeader()

# Experimental Conditions
exp = ismrmrd.xsd.experimentalConditionsType()
exp.H1resonanceFrequency_Hz = 128000000
header.experimentalConditions = exp

# Acquisition System Information
sys = ismrmrd.xsd.acquisitionSystemInformationType()
sys.receiverChannels = coils
Expand All @@ -45,7 +49,7 @@ def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2, rep
# Encoding
encoding = ismrmrd.xsd.encoding()
encoding.trajectory = ismrmrd.xsd.trajectoryType.cartesian

# encoded and recon spaces
efov = ismrmrd.xsd.fieldOfView_mm()
efov.x = oversampling*256
Expand All @@ -55,7 +59,7 @@ def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2, rep
rfov.x = 256
rfov.y = 256
rfov.z = 5

ematrix = ismrmrd.xsd.matrixSize()
ematrix.x = nkx
ematrix.y = nky
Expand All @@ -64,101 +68,104 @@ def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2, rep
rmatrix.x = nx
rmatrix.y = ny
rmatrix.z = 1

espace = ismrmrd.xsd.encodingSpaceType()
espace.matrixSize = ematrix
espace.fieldOfView_mm = efov
rspace = ismrmrd.xsd.encodingSpaceType()
rspace.matrixSize = rmatrix
rspace.fieldOfView_mm = rfov

# Set encoded and recon spaces
encoding.encodedSpace = espace
encoding.reconSpace = rspace

# Encoding limits
limits = ismrmrd.xsd.encodingLimitsType()

limits1 = ismrmrd.xsd.limitType()
limits1.minimum = 0
limits1.center = ny/2
limits1.center = ny // 2
limits1.maximum = ny - 1
limits.kspace_encoding_step_1 = limits1

limits_rep = ismrmrd.xsd.limitType()
limits_rep.minimum = 0
limits_rep.center = repetitions / 2
limits_rep.center = repetitions // 2
limits_rep.maximum = repetitions - 1
limits.repetition = limits_rep

limits_rest = ismrmrd.xsd.limitType()
limits_rest.minimum = 0
limits_rest.center = 0
limits_rest.maximum = 0
limits.kspace_encoding_step_0 = limits_rest
limits.slice = limits_rest
limits.slice = limits_rest
limits.average = limits_rest
limits.contrast = limits_rest
limits.kspaceEncodingStep2 = limits_rest
limits.phase = limits_rest
limits.segment = limits_rest
limits.set = limits_rest

encoding.encodingLimits = limits
header.encoding.append(encoding)

dset.write_xml_header(header.toxml('utf-8'))
dset.write_xml_header(header.toxml('utf-8'))

# Synthesize the k-space data
Ktrue = transform.transform_image_to_kspace(coil_images,(1,2))
Ktrue = transform.transform_image_to_kspace(coil_images, (1, 2))

# Create an acquistion and reuse it
acq = ismrmrd.Acquisition()
acq.resize(nkx, coils)
acq.version = 1
acq.available_channels = coils
acq.center_sample = nkx/2
acq.center_sample = nkx // 2
acq.read_dir[0] = 1.0
acq.phase_dir[1] = 1.0
acq.slice_dir[2] = 1.0

# Initialize an acquisition counter
counter = 0

# Write out a few noise scans
for n in range(32):
noise = noise_level * (np.random.randn(coils, nkx) + 1j * np.random.randn(coils, nkx))
noise = noise_level * \
(np.random.randn(coils, nkx) + 1j * np.random.randn(coils, nkx))
# here's where we would make the noise correlated
acq.scan_counter = counter
acq.clearAllFlags()
acq.setFlag(ismrmrd.ACQ_IS_NOISE_MEASUREMENT)
acq.data[:] = noise
dset.append_acquisition(acq)
counter += 1 # increment the scan counter
counter += 1 # increment the scan counter

# Loop over the repetitions, add noise and write to disk
# simulating a T-SENSE type scan
for rep in range(repetitions):
noise = noise_level * (np.random.randn(coils, nky, nkx) + 1j * np.random.randn(coils, nky, nkx))
noise = noise_level * \
(np.random.randn(coils, nky, nkx) +
1j * np.random.randn(coils, nky, nkx))
# here's where we would make the noise correlated
K = Ktrue + noise
acq.idx.repetition = rep
for acc in range(acceleration):
for line in np.arange(acc,nky,acceleration):
for line in np.arange(acc, nky, acceleration):
# set some fields in the header
acq.scan_counter = counter
acq.idx.kspace_encode_step_1 = line
acq.clearAllFlags()
if line == 0:
acq.setFlag(ismrmrd.ACQ_FIRST_IN_ENCODE_STEP1)
acq.setFlag(ismrmrd.ACQ_FIRST_IN_SLICE)
acq.setFlag(ismrmrd.ACQ_FIRST_IN_REPETITION)
acq.setFlag(ismrmrd.ACQ_FIRST_IN_ENCODE_STEP1)
acq.setFlag(ismrmrd.ACQ_FIRST_IN_SLICE)
acq.setFlag(ismrmrd.ACQ_FIRST_IN_REPETITION)
elif line == nky - 1:
acq.setFlag(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1)
acq.setFlag(ismrmrd.ACQ_LAST_IN_SLICE)
acq.setFlag(ismrmrd.ACQ_LAST_IN_REPETITION)
acq.setFlag(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1)
acq.setFlag(ismrmrd.ACQ_LAST_IN_SLICE)
acq.setFlag(ismrmrd.ACQ_LAST_IN_REPETITION)
# set the data and append
acq.data[:] = K[:,line,:]
acq.data[:] = K[:, line, :]
dset.append_acquisition(acq)
counter += 1

Expand All @@ -167,22 +174,27 @@ def create(filename='testdata.h5', matrix_size=256, coils=8, oversampling=2, rep


def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-o', '--output', help='output filename')
parser.add_argument('-m', '--matrix-size', type=int, dest='matrix_size', help='k-space matrix size')
parser.add_argument('-m', '--matrix-size', type=int, dest='matrix_size',
help='k-space matrix size')
parser.add_argument('-c', '--coils', type=int, help='number of coils')
parser.add_argument('-s', '--oversampling', type=int, help='oversampling')
parser.add_argument('-r', '--repetitions', type=int, help='number of repetitions')
parser.add_argument('-r', '--repetitions', type=int,
help='number of repetitions')
parser.add_argument('-a', '--acceleration', type=int, help='acceleration')
parser.add_argument('-n', '--noise-level', type=float, dest='noise_level', help='noise level')
parser.add_argument('-n', '--noise-level', type=float, dest='noise_level',
help='noise level')

parser.set_defaults(output='testdata.h5', matrix_size=256, coils=8,
oversampling=2, repetitions=1, acceleration=1, noise_level=0.05)
oversampling=2, repetitions=1, acceleration=1,
noise_level=0.05)

args = parser.parse_args()

create(args.output, args.matrix_size, args.coils, args.oversampling,
args.repetitions, args.acceleration, args.noise_level)
args.repetitions, args.acceleration, args.noise_level)

if __name__ == "__main__":
main()
3 changes: 2 additions & 1 deletion ismrmrdtools/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,5 @@
ISMRMRD Python Tools
"""

__all__ = ["sense", "transform", "show", "simulation", "coils", "grappa", "ndarray_io"]
__all__ = ["sense", "transform", "show", "simulation", "coils", "grappa",
"ndarray_io"]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a bug. You're missing a comma between "grappa" and "ndarray_io".

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks

Loading