The repository contains the source code for implementations of the local training on the test rig data. The implementations differ mainly in the orchestration and tracking stacks. The implemented orchestrators include dvc, prefect and kfp. All aspire to leverage mlflow
for experiment tracking and optuna
for tuning.
python -m venv .venv
source .venv/Scripts/activate
python -m pip install --upgrade pip setuptools
pip install -r conf/requirements-dev.txt
cd dvc/
dvc repro [OPTIONS]
See reference for details on the available dvc repro
CLI options.
dvc exp run [OPTIONS] [PARAMS]
See reference for details on the available dvc exp run
CLI options. The training parameters can be set with -S
flag. To see the list of the available training parameters, see params.yaml.
cd prefect/
python src/training.py [OPTIONS]
OPTIONS:
--train_split TRAIN_SPLIT
--lookback LOOKBACK
--val_split VAL_SPLIT
--epochs EPOCHS
--batch_size BATCH_SIZE
--patience PATIENCE
--lstm_units LSTM_UNITS
--learning_rate LEARNING_RATE
--folds FOLDS
--verbose VERBOSE
--univariate
prefect orion start
See localhost:4200
mlflow ui
See localhost:5000