Skip to content

Ricci-curvature applied to climate networks to study teleconnection patterns of ENSO diversity.

License

Notifications You must be signed in to change notification settings

jakob-schloer/netcurvature

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

Teleconnection patterns of different El Nino types revealed by climate network curvature

Ricci-curvature applied to climate networks to study teleconnection patterns of ENSO diversity.

An intuition on network curvature:

toymodel

Clone the repo and install all required packages

1. Clone repository with submodules:

git clone --recurse-submodules https://github.com/jakob-schloer/netcurvature.git

2. Installing packages

To reproduce our analysis described in the paper follow these steps: We recommend to create a new environment and install all required packages by running:

conda env create -f submodules/climnet/condaEnv.yml 
conda activate climnetenv 
pip install graphriccicurvature 
pip install -e submodules/climnet 

3. Download data

Download 2m temperature data from ERA5 and store the merged files in the data folder.

Reproduce plots

  1. Create the corresponding networks
python bin/t2m_create_net.py -data 'datapath' -s 'standard'
python bin/t2m_create_net.py -data 'datapath' -s 'Nino_EP'
python bin/t2m_create_net.py -data 'datapath' -s 'Nino_CP'
  1. Reproduce plots in the paper by running
python bin/paperplots.py -d 'datapath' -ep 'epNetPath' -cp 'cpNetPath' -normal 'normalNetPath'

The figures should look somehow similiar to the following:


fig2


fig3


fig4

The networks used for this plots are stored in 'outputs/t2m_1950-2020_nino_nets'.

About

Ricci-curvature applied to climate networks to study teleconnection patterns of ENSO diversity.

Resources

License

Stars

Watchers

Forks

Packages

No packages published