Easily install, load and update an R package ecosystem for performing analyses of high resolution metabolomics data.
hrm
packages include:
- metaboData - Example data sets for metabolomics analyses
- grover - Web API Framework for Mass Spectrometry Data Transfer
- binneR - Spectral Processing for High Resolution Flow Infusion Mass Spectrometry
- metabolyseR - A tool kit for pre-treatment, modelling, feature selection and correlation analyses of metabolomics data
- profilePro - Unified Input and Output for Processing of Metabolomic Profiling Experiments
- mzAnnotation - Tools for putative annotation of accurate m/z from electrospray ionisation mass spectrometry data
- assignments - Molecular formula assignment for high resolution ESI metabolomics
- construction - Consensus structural classifications for putative molecular formula assignments
- riches - Structural and functional enrichment for metabolomics data
- metaboMisc - A collection of miscellaneous helper and linker functions for metabolomics analyses
- metaboWorkflows - Workflow Project Templates for Metabolomics Analyses
Install the hrm
package from GitHub using:
remotes::install_github('jasenfinch/hrm')
Loading the hrm
packages will load the included R packages.
library(hrm)
#> ── Attaching packages ───────────────────────────────────────────── hrm 0.9.2 ──
#> ✔ chunky 0.1.1 ✔ projecttemplates 0.6.1
#> ✔ metaboData 0.6.3 ✔ grover 1.1.3
#> ✔ binneR 2.6.3 ✔ metabolyseR 0.15.0
#> ✔ profilePro 0.8.2 ✔ mzAnnotation 2.0.0
#> ✔ assignments 1.0.0 ✔ construction 0.3.0
#> ✔ riches 0.3.0 ✔ metaboMisc 0.6.1
#> ✔ metaboWorkflows 0.10.0
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr 1.1.1 ✔ readr 2.1.4
#> ✔ forcats 1.0.0 ✔ stringr 1.5.0
#> ✔ ggplot2 3.4.1 ✔ tibble 3.2.1
#> ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
#> ✔ purrr 1.0.1
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::collect() masks xcms::collect()
#> ✖ dplyr::combine() masks MSnbase::combine(), Biobase::combine(), BiocGenerics::combine()
#> ✖ tidyr::expand() masks S4Vectors::expand()
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::first() masks S4Vectors::first()
#> ✖ dplyr::glimpse() masks tibble::glimpse(), metaboWorkflows::glimpse()
#> ✖ dplyr::groups() masks xcms::groups()
#> ✖ dplyr::lag() masks stats::lag()
#> ✖ ggplot2::Position() masks BiocGenerics::Position(), base::Position()
#> ✖ purrr::reduce() masks metaboMisc::reduce(), MSnbase::reduce()
#> ✖ dplyr::rename() masks S4Vectors::rename()
#> ✖ lubridate::second() masks S4Vectors::second()
#> ✖ lubridate::second<-() masks S4Vectors::second<-()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Alteratively, these packages can be loaded using the following, without
loading the hrm
package directly.
hrm::hrmAttach()
A vector of the current hrm
packages can be found by:
hrmPackages()
#> [1] "chunky" "projecttemplates" "metaboData" "grover"
#> [5] "binneR" "metabolyseR" "profilePro" "mzAnnotation"
#> [9] "assignments" "construction" "riches" "metaboMisc"
#> [13] "metaboWorkflows"
hrm
associated packages can be updated using:
hrmUpdate()