-
Notifications
You must be signed in to change notification settings - Fork 5
/
config.yaml
276 lines (246 loc) · 10.8 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Configuration file for pipeline
# List matutils pre-built mutation-annotated tree. We do the analysis for each tree and put
# in a subdirectory called `results_{mat}` where `{mat}` is the name of that tree.
# The most recent public trees are at
# http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/
mat_trees:
public_2024-11-06: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2024/11/06/public-2024-11-06.all.masked.pb.gz
public_2024-04-19: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2024/04/19/public-2024-04-19.all.masked.pb.gz
public_2023-10-01: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2023/10/01/public-2023-10-01.all.masked.nextclade.pangolin.pb.gz
public_2023-06-21: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2023/06/21/public-2023-06-21.all.masked.nextclade.pangolin.pb.gz
public_2023-05-11: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2023/05/11/public-2023-05-11.all.masked.nextclade.pangolin.pb.gz
public_2023-03-27: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2023/03/27/public-2023-03-27.all.masked.nextclade.pangolin.pb.gz
public_2022-12-18: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2022/12/18/public-2022-12-18.all.masked.nextclade.pangolin.pb.gz
public_2022-01-31: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/2022/01/31/public-2022-01-31.all.masked.nextclade.pangolin.pb.gz
# specify one of the mutation-annotated trees in `mat_trees` as the "current" one that is
# linked to by default as the best current estimates.
current_mat: public_2024-11-06
# Reference GTF and FASTA, and location of spike coding sequence
ref_fasta: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/wuhCor1.fa.gz
ref_gtf: http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/genes/ncbiGenes.gtf.gz
# gene annotations to add to the reference GTF, which is missing ORF9b, see:
# https://github.com/jbloomlab/SARS2-mut-fitness/issues/21
add_to_ref_gtf:
ORF9b: [28284, 28577]
# Only keep nextstrain clades with at least this many samples in mutation-annotated tree
min_clade_samples: 10000
# Subset samples based on whether they start with these regex matches
sample_subsets:
all: . # regex to match anything
USA: USA
England: England
# Clade founder genotypes. For backwards-compatibility, we use the ones from Richard Neher
# when available, and those from Cornelius Roemer when the Neher file does not have a
# founder for a clade, which is the case for newer clades as he is not updating that file.
clade_founders:
neher_json: https://raw.githubusercontent.com/neherlab/SC2_variant_rates/7e738194a8c6592082f1caa9a6ca70cb68289790/data/clade_gts.json
roemer_json: https://raw.githubusercontent.com/corneliusroemer/pango-sequences/main/data/pango-consensus-sequences_summary.json
# map Pango clades in `roemer_json` to NextStrain clades, from here:
# https://github.com/nextstrain/ncov/blob/master/defaults/clade_display_names.yml
roemer_nextstrain_to_pango:
23A: XBB.1.5
23B: XBB.1.16
23C: CH.1.1
23D: XBB.1.9
23E: XBB.2.3
23F: EG.5.1
23G: XBB.1.5.70
23H: HK.3
23I: BA.2.86
24A: JN.1
24B: JN.1.11.1
24C: KP.3
24D: XDV.1
24E: KP.3.1.1
24F: XEC
24G: KP.2.3
# Exclude these clades, for instance if no clade founder defined for them
clades_to_exclude:
- 21A
# For counting mutations, exclude any branches with more than this many nucleotide
# mutations or more than this many reversions to reference or clade founder. These
# filters are applied only on the coding nucleotide changes, not any non-coding ones.
max_nt_mutations: 4
max_reversions_to_ref: 1
max_reversions_to_clade_founder: 1
# Exclude nucleotide mutations from reference to clade founder and their reversions.
# These sites have higher than normal errors due to calling of missing bases to reference.
exclude_ref_to_founder_muts: true
# Only include sites in this range (inclusive). Currently set to exclude sites in the UTRs
# before/after coding sequences as these may not be well covered in UShER tree:
site_include_range:
start: 266 # start of ORF1ab
end: 29674 # end of ORF10
# exclude the following sites for all clades (set to null for no exclusions)
sites_to_exclude:
# Sites in Table S1 of https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009175
- 153
- 1149
- 2198
- 3145
- 3564
- 3778
- 4050
- 6255
- 8022
- 8790
- 13402
- 13947
- 22802
- 24389
- 24390
- 24933
# sites specified for exclusion because they have extremely high mutation
# frequency in some clade
- 5629 # T5629G is much higher (~5% of all) in clade 20A than any other mutation.
- 6851 # C6851A and its reversion are top two mutations in 20C at ~5% and ~3% of all mutations
- 7328 # ~6% of all mutations in clade 21I, also highly mutated (~4% of all) in several other clades
- 28095 # ~11% of all mutations in clade 20I
- 29362 # ~30% of all mutations in clade 21C
# Name of VCF with sites masked across entire tree
site_mask_vcf: https://raw.githubusercontent.com/W-L/ProblematicSites_SARS-CoV2/master/subset_vcf/problematic_sites_sarsCov2.mask.vcf
# Name of YAML with UShER masked sites. These are sites masked per clade
# in the pre-built UShER tree.
usher_masked_sites: data/usher_masked_sites.yaml
# for analysis of 4-fold synonymous mutation spectra/rates, only keep clade subsets with
# at least this many non-excluded mutation counts
synonymous_spectra_min_counts: 5000
# Orf1ab to Nsp numbering (amino-acid start in Orf1ab) from
# https://github.com/theosanderson/Codon2Nucleotide/blob/main/src/App.js
orf1ab_to_nsps:
nsp1: [1, 180]
nsp2: [181, 818]
nsp3: [819, 2763]
nsp4: [2764, 3263]
nsp5 (Mpro): [3264, 3569]
nsp6: [3570, 3859]
nsp7: [3860, 3942]
nsp8: [3943, 4140]
nsp9: [4141, 4253]
nsp10: [4254, 4392]
nsp12 (RdRp): [4393, 5324]
nsp13: [5325, 5925]
nsp14: [5926, 6452]
nsp15: [6453, 6798]
nsp16: [6799, 7096]
# How to handle nucleotide sites that overlap among sites: exclude them from
# amino-acid fitness estimates or retain those sites in estimates. If retained, estimates
# can be confounded by not knowing which gene the selection is acting on.
gene_overlaps:
exclude:
- [ORF1a, ORF1ab] # 11 sites of overlap near ribosomal frameshifting location
- [ORF7a, ORF7b] # 1 site of overlap corresponding to ORF7a stop codon
retain:
- [N, ORF9b] # ORF9b is a 291 out-of-frame overlapping reading frame in N
# Pseudocount for calculating amino-acid fitnesses
fitness_pseudocount: 0.5
# initial cutoff for minimum expected count to show fitness values
min_expected_count: 10
# only plot correlation among clades when at least this many expected counts
clade_corr_min_count: 500000
# initial clade founder to use as "wildtype" when plotting aa fitnesses
aa_fitness_init_ref_clade: 19A
# amino-acid fitness heatmap color spans **at least** much (expanded if needed by data)
aa_fitness_heatmap_minimal_domain: [-6, 2]
# Define common names of Nexstrain clades
clade_synonyms:
19A: B
20A: B.1
20B: B.1.1
20C: B.1.367
20E: B.1.177
20F: D.2
20G: B.1.2
20I: Alpha
20J: Gamma
21C: Epsilon
21F: Iota
21I: Delta
21J: Delta
21K: Omicron BA.1
21L: Omicron BA.2
22A: Omicron BA.4
22B: Omicron BA.5
22C: Omicron BA.2.12.1
22D: Omicron BA.2.75
22E: Omicron BQ.1
22F: XBB
23A: XBB.1.5
23B: BB.1.16
23C: CH.1.1
23D: XBB.1.9
23E: XBB.2.3
23F: EG.5.1
23G: XBB.1.5.70
23H: HK.3
23I: BA.2.86
24A: JN.1
24B: JN.1.11.1
24C: KP.3
24D: XDV.1
24E: KP.3.1.1
24F: XEC
24G: KP.2.3
# Deep mutational scanning datasets to correlate fitness estimates with:
dms_datasets:
dadonaite_ba1_spike:
study: https://doi.org/10.1016/j.cell.2023.02.001
description: spike (Dadonaite et al, 2023)
gene: S
url: https://raw.githubusercontent.com/dms-vep/SARS-CoV-2_Omicron_BA.1_spike_DMS_mAbs/main/results/muteffects_functional/muteffects_observed.csv
filter_cols:
times_seen: 3
starr_rbd:
study: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1010951
description: RBD (Starr et al, 2022)
gene: S
url: https://media.githubusercontent.com/media/jbloomlab/SARS-CoV-2-RBD_DMS_Omicron/f76ba2b2bec18ede9fa9da18c9ccc52389b1ba3a/results/final_variant_scores/final_variant_scores.csv
iketani_mpro:
study: https://www.sciencedirect.com/science/article/pii/S1931312822004024
description: Mpro (Iketani et al, 2022)
gene: nsp5 (Mpro)
url: https://raw.githubusercontent.com/alejandrochavezlab/3CL_protease_DMS/dc802ee3ea9d43005ca97a28af078767fd66777c/outputs/results/normalized_to_wt_and_stop/activity_scores.csv
wt_seq: data/Mpro.fa
flynn_mpro_2022:
study: https://elifesciences.org/articles/77433
description: Mpro (Flynn et al, 2022)
gene: nsp5 (Mpro)
url: https://cdn.elifesciences.org/articles/77433/elife-77433-fig2-data1-v2.xlsx
wt_seq: data/Mpro.fa
flynn_mpro_2023:
study: https://doi.org/10.1101/2023.03.02.530652
description: Mpro (Flynn et al, 2023)
gene: nsp5 (Mpro)
url: https://www.biorxiv.org/content/biorxiv/early/2023/03/02/2023.03.02.530652/DC1/embed/media-1.xlsx
# Spike fitness estimates from Richard Neher, based on approach in his paper:
# https://academic.oup.com/ve/advance-article/doi/10.1093/ve/veac113/6887176
# These are designed as an independent cross check of the fitness estimates here.
neher_fitness: data/Neher_aa_fitness.csv
# For analysis of fixed mutations in each clade, do this relative
# to this clade founder as "reference"
clade_fixed_muts_ref: 19A # this is Wuhan-Hu-1
# For analysis of mutation fitness versus terminal / non-terminal counts,
# specify pseudocount and initial minimum actual count
terminal_pseudocount: 0.5
terminal_min_actual_count: 5
# For dN/dS comparative analysis
dnds: https://raw.githubusercontent.com/spond/SARS-CoV-2-variation/master/windowed-sites-fel-all.csv
# For comparison to other studies
comparator_studies:
rodriguez_rivas_dca:
data: https://raw.githubusercontent.com/GiancarloCroce/DCA_SARS-CoV-2/main/data/data_dca_proteome.csv
name: Rodriguez-Rivas et al (2022)
maher_drivers:
data: https://www.science.org/doi/suppl/10.1126/scitranslmed.abk3445
name: Maher et al (2022)
thadani_learning:
data: https://www.biorxiv.org/content/biorxiv/early/2023/04/12/2022.07.21.501023/DC4/embed/media-4.zip
name: Thadani et al (2023)
# For GitHub Pages docs of plots
docs_url: https://jbloomlab.github.io/SARS2-mut-fitness # base URL for GitHub pages site
docs_plot_annotations: data/docs_plot_annotations.yaml # lists plots and their annotations
# Metadata for aa_fitness JSON
citation: https://academic.oup.com/ve/article/9/2/vead055/7265011
authors: [Jesse Bloom, Richard Neher]
source: https://github.com/jbloomlab/SARS2-mut-fitness/tree/main
description: Estimated fitness for amino acid mutations in each SARS-CoV-2 gene from natural occurrences.