-
** Create amazon AWS account **
-
** Request EC2 limit upgrade **
- https://aws.amazon.com/contact-us/ec2-request
- Ireland (EU)
- p2.xlarge
- reason: fast.ai MOOC
-
** Download Anaconda for python 2.7 **
-
** Install AWS CLI **
pip install awscli
- check by typing
aws
. If it complains about locale's check this site
-
** Create new AWS user **
- https://console.aws.amazon.com/iam/home?region=eu-west-1#/users$new?step=details
- [username]
- Check 'Programmatic access'
- next
- Add policies directly -> 'AdministratorAccess'
- next
- Copy / paste Access key ID & Secret access key somewhere safe (credentials.txt)
-
Configure AWS
aws configure
- Enter previous generated credentials
- Region: eu-west-1
- Output: text
-
Download setup script
- Check the git repo https://github.com/fastai/courses/tree/master/setup
- Download setup file:
wget https://raw.githubusercontent.com/fastai/courses/master/setup/setup_p2.sh
chmod 775 setup_p2.sh
-
Run setup
./setup_p2.sh
- Copy output in credentials
- Copy connection command
-
Connect to server
ssh -i /Users/[localUser]/.ssh/aws-key.pem ubuntu@[instanceUrl]
- When prompted type 'yes'
-
Update packages & reboot
- Undo bug with history:
sudo rm .bash_history
sudo apt-get update
sudo apt-get upgrade
sudo reboot now
- Undo bug with history:
-
Check setup
- After reboot, login again and check nvidia drivers:
nvidia-smi
- Trouble shoot http://wiki.fast.ai/index.php/AWS_install
- After reboot, login again and check nvidia drivers:
-
Start notebook
jupyter notebook
- Goto url: http://[instanceUrl]:8888
- Default pass 'dl_course'
-
Check notebooks
- Create new notebook in 'nbs' folder usding Python [conda root]
- check basic command (like
1+1
) - check imports
import theano
&import keras
-
Shortcuts
- Download aliases
wget https://raw.githubusercontent.com/fastai/courses/master/setup/aws-alias.sh
source aws-alias.sh
- Download aliases
-
Setup notebooks
- Fork the gitrepo https://github.com/fastai/courses
Perhaps rename it to something sensible, like fastai-courses?
- SSH to machine (
aws-ssh
) cd ~
if you are not already there- Clone your repo
git clone https://github.com/[repoUrl]
- Make a link to notebooks
ln -s ~/[repoName]/deeplearning1/nbs/ nbs/deeplearning1
- Run jupyter in background
jupyter notebook &> /dev/null &
- Make data dir
mkdir ~/nbs/data
and change to itcd ~/nbs/data
- Download dogs&cats
wget http://www.platform.ai/data/dogscats.zip
- Install unzip
sudo apt-get install unzip
- Unzip the data
unzip -q dogscats.zip
- Go to your notebook http://[instanceUrl]:8888/notebooks/deeplearning1/lesson1.ipynb
- Step through the process of lesson1.ipynb
-
Kaggle CLI
- Create profile at https://www.kaggle.com/
- On server:
pip install kaggle-cli
kg config -g -u [username] -p [password] -c dogs-vs-cats-redux-kernels-edition
mkdir ~/nbs/data/dogscats.2
and cd to it- Go to https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition and accept competition requirements (by downloading the data)
- On server:
kg download
forked from TomLous/practical-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
jenniferzhu/practical-deep-learning
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
fast.ai course for coders
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Shell 100.0%