The API is used to be deployed as a microservice on cloud (e.g. AWS) where an image is given and the result will returned as such:
{
valid : < whether the result is applicable for the image or not. If it is not, the result should be disregarded. >,
spoof: < whether the image is spoofed (True) or not (False) >,
runtime: < the duration taken to reach the conclusion >
}
The Makefile has all the needed functions to run and test in docker locally.
Folder Structure:
.
├── Dockerfile
├── Makefile
├── README.md
├── config
│ └── gunicorn.conf.py
├── data
├── entrypoint.sh
├── misc
├── requirements.txt
├── scripts
│ └── run.sh
└── src
├── __init__.py
├── models
│ ├── detectors
│ │ ├── face_RFB
│ │ │ ├── RFB-320.caffemodel
│ │ │ └── RFB-320.prototxt
│ │ ├── face_detector
│ │ │ ├── deploy.prototxt
│ │ │ └── res10_300x300_ssd_iter_140000.caffemodel
│ │ └── haarcascade_eye.xml
│ ├── labels
│ │ └── le.pickle
│ └── nn_models
│ └── vgg16_pretrained.model
├── modules
│ ├── __init__.py
│ ├── config.py
│ └── nn_predict_helper.py
└── predict.py