forked from scikit-learn-contrib/imbalanced-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
DOC add Geometric SMOTE examples (scikit-learn-contrib#881)
- Loading branch information
1 parent
7e34701
commit e4d7f61
Showing
2 changed files
with
408 additions
and
0 deletions.
There are no files selected for viewing
213 changes: 213 additions & 0 deletions
213
examples/over-sampling/plot_geometric_smote_generation_mechanism.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
""" | ||
========================= | ||
Data generation mechanism | ||
========================= | ||
This example illustrates the Geometric SMOTE data | ||
generation mechanism and the usage of its | ||
hyperparameters. | ||
""" | ||
|
||
# Author: Georgios Douzas <[email protected]> | ||
# Licence: MIT | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
from sklearn.datasets import make_blobs | ||
from imblearn.over_sampling import SMOTE | ||
|
||
from gsmote import GeometricSMOTE | ||
|
||
print(__doc__) | ||
|
||
XLIM, YLIM = [-3.0, 3.0], [0.0, 4.0] | ||
RANDOM_STATE = 5 | ||
|
||
|
||
def generate_imbalanced_data( | ||
n_maj_samples, n_min_samples, centers, cluster_std, *min_point | ||
): | ||
"""Generate imbalanced data.""" | ||
X_neg, _ = make_blobs( | ||
n_samples=n_maj_samples, | ||
centers=centers, | ||
cluster_std=cluster_std, | ||
random_state=RANDOM_STATE, | ||
) | ||
X_pos = np.array(min_point) | ||
X = np.vstack([X_neg, X_pos]) | ||
y_pos = np.zeros(X_neg.shape[0], dtype=np.int8) | ||
y_neg = np.ones(n_min_samples, dtype=np.int8) | ||
y = np.hstack([y_pos, y_neg]) | ||
return X, y | ||
|
||
|
||
def plot_scatter(X, y, title): | ||
"""Function to plot some data as a scatter plot.""" | ||
plt.figure() | ||
plt.scatter(X[y == 1, 0], X[y == 1, 1], label='Positive Class') | ||
plt.scatter(X[y == 0, 0], X[y == 0, 1], label='Negative Class') | ||
plt.xlim(*XLIM) | ||
plt.ylim(*YLIM) | ||
plt.gca().set_aspect('equal', adjustable='box') | ||
plt.legend() | ||
plt.title(title) | ||
|
||
|
||
def plot_hyperparameters(oversampler, X, y, param, vals, n_subplots): | ||
"""Function to plot resampled data for various | ||
values of a geometric hyperparameter.""" | ||
n_rows = n_subplots[0] | ||
fig, ax_arr = plt.subplots(*n_subplots, figsize=(15, 7 if n_rows > 1 else 3.5)) | ||
if n_rows > 1: | ||
ax_arr = [ax for axs in ax_arr for ax in axs] | ||
for ax, val in zip(ax_arr, vals): | ||
oversampler.set_params(**{param: val}) | ||
X_res, y_res = oversampler.fit_resample(X, y) | ||
ax.scatter(X_res[y_res == 1, 0], X_res[y_res == 1, 1], label='Positive Class') | ||
ax.scatter(X_res[y_res == 0, 0], X_res[y_res == 0, 1], label='Negative Class') | ||
ax.set_title(f'{val}') | ||
ax.set_xlim(*XLIM) | ||
ax.set_ylim(*YLIM) | ||
|
||
|
||
def plot_comparison(oversamplers, X, y): | ||
"""Function to compare SMOTE and Geometric SMOTE | ||
generation of noisy samples.""" | ||
fig, ax_arr = plt.subplots(1, 2, figsize=(15, 5)) | ||
for ax, (name, ovs) in zip(ax_arr, oversamplers): | ||
X_res, y_res = ovs.fit_resample(X, y) | ||
ax.scatter(X_res[y_res == 1, 0], X_res[y_res == 1, 1], label='Positive Class') | ||
ax.scatter(X_res[y_res == 0, 0], X_res[y_res == 0, 1], label='Negative Class') | ||
ax.set_title(name) | ||
ax.set_xlim(*XLIM) | ||
ax.set_ylim(*YLIM) | ||
|
||
|
||
############################################################################### | ||
# Generate imbalanced data | ||
############################################################################### | ||
|
||
############################################################################### | ||
# We are generating a highly imbalanced non Gaussian data set. Only two samples | ||
# from the minority (positive) class are included to illustrate the Geometric | ||
# SMOTE data generation mechanism. | ||
|
||
X, y = generate_imbalanced_data( | ||
200, 2, [(-2.0, 2.25), (1.0, 2.0)], 0.25, [-0.7, 2.3], [-0.5, 3.1] | ||
) | ||
plot_scatter(X, y, 'Imbalanced data') | ||
|
||
############################################################################### | ||
# Geometric hyperparameters | ||
############################################################################### | ||
|
||
############################################################################### | ||
# Similarly to SMOTE and its variations, Geometric SMOTE uses the `k_neighbors` | ||
# hyperparameter to select a random neighbor among the k nearest neighbors of a | ||
# minority class instance. On the other hand, Geometric SMOTE expands the data | ||
# generation area from the line segment of the SMOTE mechanism to a hypersphere | ||
# that can be truncated and deformed. The characteristics of the above geometric | ||
# area are determined by the hyperparameters ``truncation_factor``, | ||
# ``deformation_factor`` and ``selection_strategy``. These are called geometric | ||
# hyperparameters and allow the generation of diverse synthetic data as shown | ||
# below. | ||
|
||
############################################################################### | ||
# Truncation factor | ||
# .............................................................................. | ||
# | ||
# The hyperparameter ``truncation_factor`` determines the degree of truncation | ||
# that is applied on the initial geometric area. Selecting the values of | ||
# geometric hyperparameters as `truncation_factor=0.0`, | ||
# ``deformation_factor=0.0`` and ``selection_strategy='minority'``, the data | ||
# generation area in 2D corresponds to a circle with center as one of the two | ||
# minority class samples and radius equal to the distance between them. In the | ||
# multi-dimensional case the corresponding area is a hypersphere. When | ||
# truncation factor is increased, the hypersphere is truncated and for | ||
# ``truncation_factor=1.0`` becomes a half-hypersphere. Negative values of | ||
# ``truncation_factor`` have a similar effect but on the opposite direction. | ||
|
||
gsmote = GeometricSMOTE( | ||
k_neighbors=1, | ||
deformation_factor=0.0, | ||
selection_strategy='minority', | ||
random_state=RANDOM_STATE, | ||
) | ||
truncation_factors = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) | ||
n_subplots = [2, 3] | ||
plot_hyperparameters(gsmote, X, y, 'truncation_factor', truncation_factors, n_subplots) | ||
plot_hyperparameters(gsmote, X, y, 'truncation_factor', -truncation_factors, n_subplots) | ||
|
||
############################################################################### | ||
# Deformation factor | ||
# .............................................................................. | ||
# | ||
# When the ``deformation_factor`` is increased, the data generation area deforms | ||
# to an ellipsis and for ``deformation_factor=1.0`` becomes a line segment. | ||
|
||
gsmote = GeometricSMOTE( | ||
k_neighbors=1, | ||
truncation_factor=0.0, | ||
selection_strategy='minority', | ||
random_state=RANDOM_STATE, | ||
) | ||
deformation_factors = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) | ||
n_subplots = [2, 3] | ||
plot_hyperparameters(gsmote, X, y, 'deformation_factor', truncation_factors, n_subplots) | ||
|
||
############################################################################### | ||
# Selection strategy | ||
# .............................................................................. | ||
# | ||
# The hyperparameter ``selection_strategy`` determines the selection mechanism | ||
# of nearest neighbors. Initially, a minority class sample is selected randomly. | ||
# When ``selection_strategy='minority'``, a second minority class sample is | ||
# selected as one of the k nearest neighbors of it. For | ||
# ``selection_strategy='majority'``, the second sample is its nearest majority | ||
# class neighbor. Finally, for ``selection_strategy='combined'`` the two | ||
# selection mechanisms are combined and the second sample is the nearest to the | ||
# first between the two samples defined above. | ||
|
||
gsmote = GeometricSMOTE( | ||
k_neighbors=1, | ||
truncation_factor=0.0, | ||
deformation_factor=0.5, | ||
random_state=RANDOM_STATE, | ||
) | ||
selection_strategies = np.array(['minority', 'majority', 'combined']) | ||
n_subplots = [1, 3] | ||
plot_hyperparameters( | ||
gsmote, X, y, 'selection_strategy', selection_strategies, n_subplots | ||
) | ||
|
||
############################################################################### | ||
# Noisy samples | ||
############################################################################### | ||
|
||
############################################################################### | ||
# We are adding a third minority class sample to illustrate the difference | ||
# between SMOTE and Geometric SMOTE data generation mechanisms. | ||
|
||
X_new = np.vstack([X, np.array([2.0, 2.0])]) | ||
y_new = np.hstack([y, np.ones(1, dtype=np.int8)]) | ||
plot_scatter(X_new, y_new, 'Imbalanced data') | ||
|
||
############################################################################### | ||
# When the number of ``k_neighbors`` is increased, SMOTE results to the | ||
# generation of noisy samples. On the other hand, Geometric SMOTE avoids this | ||
# scenario when the ``selection_strategy`` values are either ``combined`` or | ||
# ``majority``. | ||
|
||
oversamplers = [ | ||
('SMOTE', SMOTE(k_neighbors=2, random_state=RANDOM_STATE)), | ||
( | ||
'Geometric SMOTE', | ||
GeometricSMOTE( | ||
k_neighbors=2, selection_strategy='combined', random_state=RANDOM_STATE | ||
), | ||
), | ||
] | ||
plot_comparison(oversamplers, X_new, y_new) |
Oops, something went wrong.