Skip to content

Commit

Permalink
Refactored Example and initialize parameters
Browse files Browse the repository at this point in the history
Co-authored-by: Nicholas Tolley <[email protected]>
Signed-off-by: samadpls <[email protected]>
  • Loading branch information
samadpls and ntolley committed Aug 28, 2024
1 parent 2110faa commit 4fd7fe9
Show file tree
Hide file tree
Showing 2 changed files with 62 additions and 18 deletions.
66 changes: 54 additions & 12 deletions examples/howto/plot_batch_simulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,24 @@
# The number of cores may need modifying depending on your current machine.
n_jobs = 10
###############################################################################
# The `add_evoked_drive` function simulates external input to the network,
# mimicking sensory stimulation or other external events.
#
# - `evprox` indicates a proximal drive, targeting dendrites near the cell
# bodies.
# - `mu=40` and `sigma=5` define the timing (mean and spread) of the input.
# - `numspikes=1` means it's a single, brief stimulation.
# - `weights_ampa` and `synaptic_delays` control the strength and
# timing of the input.
#
# This evoked drive causes the initial positive deflection in the dipole
# signal, triggering a cascade of activity through the network and
# resulting in the complex waveforms observed.


def set_params(param_values, net=None):
"""
Set parameters in the network drives.
Set parameters for the network drives.
Parameters
----------
Expand All @@ -55,16 +68,16 @@ def set_params(param_values, net=None):
synaptic_delays=synaptic_delays)

###############################################################################
# Define a parameter grid for the batch simulation.
# Next, we define a parameter grid for the batch simulation.


param_grid = {
'weight_basket': np.logspace(-4 - 1, 10),
'weight_basket': np.logspace(-4, -1, 10),
'weight_pyr': np.logspace(-4, -1, 10)
}

###############################################################################
# Define a function to calculate summary statistics
# We then define a function to calculate summary statistics.


def summary_func(results):
Expand Down Expand Up @@ -93,12 +106,12 @@ def summary_func(results):
###############################################################################
# Run the batch simulation and collect the results.

# Comment off this code, if dask and distributed Python packages are installed
# Uncomment this code if dask and distributed Python packages are installed.
# from dask.distributed import Client
# client = Client(threads_per_worker=1, n_workers=5, processes=False)


# Run the batch simulation and collect the results.
# Initialize the network model and run the batch simulation.
net = jones_2009_model(mesh_shape=(3, 3))
batch_simulation = BatchSimulate(net=net,
set_params=set_params,
Expand All @@ -111,18 +124,47 @@ def summary_func(results):
print("Simulation results:", simulation_results)
###############################################################################
# This plot shows an overlay of all smoothed dipole waveforms from the
# batch simulation. Each line represents a different set of parameters,
# allowing us to visualize the range of responses across the parameter space.

dpl_waveforms = []
# batch simulation. Each line represents a different set of synaptic strength
# parameters (`weight_basket`), allowing us to visualize the range of responses
# across the parameter space.
# The colormap represents different synaptic strengths, with purple indicating
# lower strengths and yellow indicating higher strengths.
#
# Key observations:
#
# - The dipole signal reflects the net current flow in the cortical column.
# - Initially, we see a positive deflection as excitatory input arrives at
# the proximal dendrites, causing current to flow upwards
# (away from the soma).
# - The subsequent negative deflection, despite continued excitatory input,
# occurs when action potentials are triggered, causing rapid current flow in
# the opposite direction as the cell bodies depolarize.
# - Inhibitory neurons, when they fire, can also contribute to negative
# deflections by causing hyperpolarization in their target neurons.
# - Later oscillations likely represent ongoing network activity and
# subthreshold membrane potential fluctuations.
#
# The y-axis represents dipole amplitude in nAm (nanoAmpere-meters), which is
# the product of current flow and distance in the neural tissue.
#
# Stronger synaptic connections (yellow lines) generally show larger
# amplitude responses and more pronounced features throughout the simulation.

dpl_waveforms, param_values = [], []
for data_list in simulation_results['simulated_data']:
for data in data_list:
dpl_smooth = data['dpl'][0].copy().smooth(window_len=30)
dpl_waveforms.append(dpl_smooth.data['agg'])
param_values.append(data['param_values']['weight_basket'])

plt.figure(figsize=(10, 6))
for waveform in dpl_waveforms:
plt.plot(waveform, alpha=0.5, linewidth=3)
cmap = plt.get_cmap('viridis')
param_values = np.array(param_values)
norm = plt.Normalize(param_values.min(), param_values.max())

for waveform, param in zip(dpl_waveforms, param_values):
color = cmap(norm(param))
plt.plot(waveform, color=color, alpha=0.7, linewidth=2)
plt.title('Overlay of Dipole Waveforms')
plt.xlabel('Time (ms)')
plt.ylabel('Dipole Amplitude (nAm)')
Expand Down
14 changes: 8 additions & 6 deletions hnn_core/batch_simulate.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@


class BatchSimulate(object):
def __init__(self, set_params, net=jones_2009_model(),
def __init__(self, set_params, net=None,
tstop=170, dt=0.025, n_trials=1,
save_folder='./sim_results', batch_size=100,
overwrite=True, save_outputs=False, save_dpl=True,
Expand All @@ -36,9 +36,11 @@ def __init__(self, set_params, net=jones_2009_model(),
where ``net`` is a Network object and ``params`` is a dictionary
of the parameters that will be set inside the function.
net : Network object, optional
The network model to use for simulations. Must be an instance of
jones_2009_model, law_2021_model, or calcium_model.
Default is jones_2009_model().
The network model to use for simulations. Examples include:
- `jones_2009_model`: A network model based on Jones et al. (2009).
- `law_2021_model`: A network model based on Law et al. (2021).
- `calcium_model`: A network model incorporating calcium dynamics.
Default is `jones_2009_model()`
tstop : float, optional
The stop time for the simulation. Default is 170 ms.
dt : float, optional
Expand Down Expand Up @@ -104,7 +106,7 @@ def __init__(self, set_params, net=jones_2009_model(),
will be overwritten.
"""

_validate_type(net, Network, 'net', 'Network')
_validate_type(net, (Network, None), 'net', 'Network')
_validate_type(tstop, types='numeric', item_name='tstop')
_validate_type(dt, types='numeric', item_name='dt')
_validate_type(n_trials, types='int', item_name='n_trials')
Expand All @@ -127,7 +129,7 @@ def __init__(self, set_params, net=jones_2009_model(),
if summary_func is not None and not callable(summary_func):
raise TypeError("summary_func must be a callable function")

self.net = net
self.net = net if net is not None else jones_2009_model()
self.set_params = set_params
self.tstop = tstop
self.dt = dt
Expand Down

0 comments on commit 4fd7fe9

Please sign in to comment.