Skip to content

Commit

Permalink
updated readme
Browse files Browse the repository at this point in the history
  • Loading branch information
jr-leary7 committed Nov 13, 2023
1 parent 72f63c5 commit 027d020
Showing 1 changed file with 11 additions and 5 deletions.
16 changes: 11 additions & 5 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -57,11 +57,8 @@ First we'll also need to load a couple dependencies & resolve a function conflic

```{r libraries, results='hide', message=FALSE}
library(dplyr)
library(scater)
library(scLANE)
library(ggplot2)
select <- dplyr::select
filter <- dplyr::filter
```

## Input data
Expand All @@ -75,14 +72,23 @@ sim_data <- readRDS(url("https://zenodo.org/records/8433077/files/scLANE_sim_dat
The PCA embeddings show us a pretty simple trajectory that's strongly correlated with the first principal component.

```{r plot-sims-pt, results='hold'}
plotPCA(sim_data, colour_by = "cell_time_normed") +
data.frame(sim_data@int_colData$reducedDims@listData$PCA[, 1:2]) %>%
mutate(pseudotime = sim_data$cell_time_normed) %>%
ggplot(aes(x = PC1, y = PC2, color = pseudotime)) +
geom_point(size = 2, alpha = 0.75, stroke = 0) +
scale_color_gradientn(colors = viridisLite::plasma(n = 20)) +
labs(x = "PC 1", y = "PC 2", color = "Pseudotime") +
theme_scLANE(umap = TRUE)
```

We also see that the data are not clustered by subject, which indicates that gene dynamics are mostly homogeneous across subjects.

```{r plot-sims-subj, results='hold'}
plotPCA(sim_data, colour_by = "subject") +
data.frame(sim_data@int_colData$reducedDims@listData$PCA[, 1:2]) %>%
mutate(subject = sim_data$subject) %>%
ggplot(aes(x = PC1, y = PC2, color = subject)) +
geom_point(size = 2, alpha = 0.75, stroke = 0) +
labs(x = "PC 1", y = "PC 2", color = "Subject ID") +
theme_scLANE(umap = TRUE)
```

Expand Down

0 comments on commit 027d020

Please sign in to comment.