Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev #268

Merged
merged 6 commits into from
Oct 30, 2024
Merged

Dev #268

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
# Changes in v0.8.7

+ Switched GEE fitting back to use `scale.fix = FALSE` and a fixed value for the Negative-binomial overdispersion parameter as it improves model fits.
+ Switched GEE fitting back to use `scale.fix = FALSE` and substituted a fixed value for the Negative-binomial overdispersion parameter (instead of estimating via method-of-moments) as it improves model fits.
+ Added option to use a Lagrange Multiplier (Score) test for GEE mode instead of the default Wald test. The relevant argument is `gee.test` in `testDynamic()`.
+ Updated documentation and some tests.
+ Added column called `Null_Fit_Notes` to output from `getResultsDE()` to describe when and how null models fail. This doesn't happen frequently, but it's good info to have when it does.
+ Expanded test suite to include C++ functions.
+ Fixed incorrectly-implemented Lagrange Multiplier test after initial code was seen to be incorrect.

# Changes in v0.8.6

Expand Down
5 changes: 3 additions & 2 deletions R/biasCorrectGEE.R
Original file line number Diff line number Diff line change
Expand Up @@ -136,12 +136,13 @@ biasCorrectGEE <- function(fitted.model = NULL,
}
W <- as.matrix(Matrix::bdiag(cov_matrices))
X <- fitted.model$X
XWX <- t(X) %*% W %*% X
X_t <- t(X)
XWX <- X_t %*% W %*% X
XWX_inv <- try({ eigenMapMatrixInvert(XWX, n_cores = 1L) }, silent = TRUE)
if (inherits(XWX_inv, "try-error")) {
XWX_inv <- eigenMapPseudoInverse(XWX, n_cores = 1L)
}
H <- X %*% XWX_inv %*% t(X) %*% W
H <- X %*% XWX_inv %*% X_t %*% W
tr_H <- sum(diag(H))
if (verbose) {
message(paste0("Trace of projection matrix H estimated at: ", round(tr_H, 5)))
Expand Down
4 changes: 2 additions & 2 deletions R/fitGLMM.R
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,9 @@
#' @param id.vec A vector of subject IDs. Defaults to NULL.
#' @param adaptive Should basis functions be chosen adaptively? Defaults to TRUE.
#' @param approx.knot Should knot approximation be used in the calls to \code{\link{marge2}}? This speeds up computation somewhat. Defaults to TRUE.
#' @param M.glm The number of possible basis functions to use in the calls to \code{\link{marge2}} when choosing basis functions adaptively.
#' @param M.glm The number of possible basis functions to use in the calls to \code{\link{marge2}} when choosing basis functions adaptively. Defaults to 3.
#' @param reg.penalty (Optional) String specifying the penalty type to be used when fitting a regularized negative-binomial model to select optimal basis functions. Defaults to "snet".
#' @param return.basis (Optional) Whether the basis model matrix (denoted \code{B_final}) should be returned as part of the \code{marge} model object. Defaults to FALSE.
#' @param return.basis (Optional) Whether the basis model matrix (denoted \code{basis_mtx}) should be returned as part of the \code{marge} model object. Defaults to FALSE.
#' @param return.GCV (Optional) Whether the final GCV value should be returned as part of the \code{marge} model object. Defaults to FALSE.
#' @param verbose (Optional) Should intermediate output be printed to the console? Defaults to FALSE.
#' @return An object of class \code{marge} containing the fitted model & other optional quantities of interest (basis function matrix, GCV, etc.).
Expand Down
2 changes: 1 addition & 1 deletion R/getResultsDE.R
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ getResultsDE <- function(test.dyn.res = NULL,
function(x) {
purrr::map_dfr(x,
function(y) {
as.data.frame(rbind(y[seq(14)])) %>%
as.data.frame(rbind(y[seq(15)])) %>%
dplyr::mutate(dplyr::across(tidyselect::everything(), \(z) unname(unlist(z))))
})
}) %>%
Expand Down
3 changes: 3 additions & 0 deletions R/testDynamic.R
Original file line number Diff line number Diff line change
Expand Up @@ -324,6 +324,7 @@ testDynamic <- function(expr.mat = NULL,
ifelse(gee.test == "wald", "Wald", "Score"),
"LRT"),
Test_Stat_Note = NA_character_,
Degrees_Freedom = NA_real_,
P_Val = NA_real_,
LogLik_MARGE = marge_sumy$ll_marge,
LogLik_Null = null_sumy$null_ll,
Expand Down Expand Up @@ -366,6 +367,7 @@ testDynamic <- function(expr.mat = NULL,
ifelse(gee.test == "wald", test_res$Wald_Stat, test_res$Score_Stat),
test_res$LRT_Stat)
lineage_list[[j]]$Test_Stat_Note <- test_res$Notes
lineage_list[[j]]$Degrees_Freedom <- test_res$DF
lineage_list[[j]]$P_Val <- test_res$P_Val
}
names(lineage_list) <- paste0("Lineage_", LETTERS[seq(n_lineages)])
Expand Down Expand Up @@ -393,6 +395,7 @@ testDynamic <- function(expr.mat = NULL,
ifelse(gee.test == "wald", "Wald", "Score"),
"LRT"),
Test_Stat_Note = NA_character_,
Degrees_Freedom = NA_real_,
P_Val = NA_real_,
LogLik_MARGE = NA_real_,
LogLik_Null = NA_real_,
Expand Down
Binary file modified data/scLANE_models.rda
Binary file not shown.
4 changes: 2 additions & 2 deletions man/fitGLMM.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

28 changes: 27 additions & 1 deletion tests/testthat/test_scLANE.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,18 @@ null_stat_gee <- stat_out_score_gee_null(Y = Y_exp,
theta.hat = 1)
tp1_res <- tp1(x = rnorm(30), t = 0)
tp2_res <- tp2(x = rnorm(30), t = 0)
# generate PD matrix for use in testing C++ matrix functions
n <- 25
A <- matrix(rnorm(n^2), nrow = n, ncol = n)
A <- t(A) %*% A

# generate scLANE results w/ all three modes
withr::with_output_sink(tempfile(), {
# choose candidate genes
# C++ matrix operations
B <- eigenMapMatMult(A, A)
C <- eigenMapMatrixInvert(A)
D <- eigenMapPseudoInverse(A)
# candidate gene selection
candidate_genes <- chooseCandidateGenes(sim_data_seu,
group.by.subject = TRUE,
id.vec = sim_data_seu$subject,
Expand Down Expand Up @@ -113,6 +121,7 @@ withr::with_output_sink(tempfile(), {
is.gee = TRUE,
id.vec = sim_data$subject,
cor.structure = "ar1",
sandwich.var = TRUE,
return.basis = TRUE,
return.GCV = TRUE,
return.WIC = TRUE)
Expand Down Expand Up @@ -142,6 +151,10 @@ withr::with_output_sink(tempfile(), {
alt.df = as.data.frame(marge_mod_GEE_offset$basis_mtx),
null.df = data.frame(Y = counts_test[, 3]),
id.vec = sim_data$subject)
# bias-correct GEE sandwich variance-covariance matrix
V_kc <- biasCorrectGEE(marge_mod_GEE$final_mod,
correction.method = "kc",
id.vec = sim_data$subject)
# run GLMM model -- no offset
glmm_mod <- fitGLMM(pt_test,
Y = counts_test[, 4],
Expand Down Expand Up @@ -282,6 +295,18 @@ withr::with_output_sink(tempfile(), {
})

# run tests
test_that("internal C++ functions", {
expect_type(B, "double")
expect_equal(ncol(B), 25)
expect_equal(nrow(B), 25)
expect_type(C, "double")
expect_equal(ncol(C), 25)
expect_equal(nrow(C), 25)
expect_type(D, "double")
expect_equal(ncol(D), 25)
expect_equal(nrow(D), 25)
})

test_that("internal marge functions", {
expect_type(min_span_res, "double")
expect_type(max_span_res, "double")
Expand Down Expand Up @@ -386,6 +411,7 @@ test_that("marge2() output -- GEE backend", {
expect_equal(marge_mod_GEE_offset$model_type, "GEE")
expect_true(marge_mod_GEE$final_mod$converged)
expect_true(marge_mod_GEE_offset$final_mod$converged)
expect_type(V_kc, "double")
})

test_that("Statistical testing output", {
Expand Down
Loading