-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fixed drawer navs and updated geometry contents
- Loading branch information
Showing
10 changed files
with
1,985 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
<!DOCTYPE html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="UTF-8" /> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0" /> | ||
<title>3 Dimensional Euclidean Geometry</title> | ||
<script type="text/x-mathjax-config"> | ||
MathJax.Hub.Config({ | ||
tex2jax: { | ||
inlineMath: [ ['$','$'], ["\\(","\\)"] ], | ||
processEscapes: true | ||
} | ||
}); | ||
</script> | ||
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> | ||
<script | ||
type="text/javascript" | ||
id="MathJax-script" | ||
async | ||
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js" | ||
></script> | ||
</head> | ||
|
||
<body> | ||
<p class="paragraph"> | ||
In physics and mathematics, a sequence of n numbers can be understood as a | ||
location in n-dimensional space. When n = 3, the set of all such locations | ||
is called <b>Three-dimensional Euclidean</b> space | ||
</p> | ||
<figure> | ||
<img | ||
style="width: 320px; height: 350px;" | ||
src="https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Coord_planes_color.svg/600px-Coord_planes_color.svg.png" | ||
/> | ||
<figcaption> | ||
A representation of a three-dimensional Cartesian coordinate system with | ||
the x-axis pointing towards the observer. | ||
</figcaption> | ||
</figure> | ||
<h2 class="subHeader"> | ||
Coordinate systems | ||
</h2> | ||
<p class="paragraph"> | ||
Cartesian geometry describes every point in three-dimensional space by | ||
means of three coordinates.Three coordinate axes are given, each | ||
perpendicular to the other two at the origin, the point at which they | ||
cross.They are usually labeled x, y, and z. Relative to these axes, the | ||
position of any point in three-dimensional space is given by an ordered | ||
triple of real numbers, each number giving the distance of that point from | ||
the origin measured along the given axis, which is equal to the distance | ||
of that point from the plane determined by the other two axes | ||
</p> | ||
<div | ||
style=" | ||
display: flex; | ||
flex-direction: row; | ||
justify-content: space-between; | ||
flex-wrap: wrap; | ||
width: 100%; | ||
" | ||
> | ||
<figure style="width: 45%;"> | ||
<img | ||
src="https://upload.wikimedia.org/wikipedia/commons/thumb/6/64/Coord_XYZ.svg/240px-Coord_XYZ.svg.png" | ||
/> | ||
<figcaption> | ||
Cartesian coordinate system | ||
</figcaption> | ||
</figure> | ||
<figure style="width: 45%;"> | ||
<img | ||
src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/240px-Cylindrical_Coordinates.svg.png" | ||
/> | ||
<figcaption> | ||
Cylindrical coordinate system | ||
</figcaption> | ||
</figure> | ||
<figure style="width: 45%;"> | ||
<img | ||
src="https://upload.wikimedia.org/wikipedia/commons/thumb/5/51/Spherical_Coordinates_%28Colatitude%2C_Longitude%29.svg/240px-Spherical_Coordinates_%28Colatitude%2C_Longitude%29.svg.png" | ||
/> | ||
<figcaption> | ||
Spherical coordinate system | ||
</figcaption> | ||
</figure> | ||
</div> | ||
<h2 class="subHeader"> | ||
Lines and planes | ||
</h2> | ||
<p class="paragraph"> | ||
Two distinct points always determine a (straight) line. Three distinct | ||
points are either collinear or determine a unique plane. On the other | ||
hand, four distinct points can either be collinear, coplanar, or determine | ||
the entire space. | ||
</p> | ||
<p class="paragraph"> | ||
Two distinct lines can either intersect, be parallel or be skew. Two | ||
parallel lines, or two intersecting lines, lie in a unique plane, so skew | ||
lines are lines that do not meet and do not lie in a common plane. | ||
</p> | ||
<div class="theorem"> | ||
<p class="paragraph"> | ||
Two distinct planes can either meet in a common line or are parallel | ||
(i.e., do not meet). Three distinct planes, no pair of which are | ||
parallel, can either meet in a common line, meet in a unique common | ||
point, or have no point in common.<br /><br /> | ||
In the last case, the three lines of intersection of each pair of planes | ||
are mutually parallel. A line can lie in a given plane, intersect that | ||
plane in a unique point, or be parallel to the plane. In the last case, | ||
there will be lines in the plane that are parallel to the given line. | ||
</p> | ||
<p class="paragraph"> | ||
A hyperplane is a subspace of one dimension less than the dimension of | ||
the full space. The hyperplanes of a three-dimensional space are the | ||
two-dimensional subspaces, that is, the planes.<br /><br /> | ||
In terms of Cartesian coordinates, the points of a hyperplane satisfy a | ||
single linear equation, so planes in this 3-space are described by | ||
linear equations. A line can be described by a pair of independent | ||
linear equations—each representing a plane having this line as a common | ||
intersection. | ||
</p> | ||
</div> | ||
<h2 class="subHeader"> | ||
Spheres and balls | ||
</h2> | ||
<p class="paragraph"> | ||
A sphere in 3-space (also called a 2-sphere because it is a 2-dimensional | ||
object) consists of the set of all points in 3-space at a fixed distance r | ||
from a central point P. The solid enclosed by the sphere is called a ball | ||
(or, more precisely a 3-ball). The volume of the ball is given by: | ||
<br /><br /> | ||
\(V = \frac{4}{3}\pi r^{3}.\) | ||
</p> | ||
<figure style="height: 320px;"> | ||
<img | ||
style="width: 320px; height: 320px;" | ||
src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/440px-Sphere_wireframe_10deg_6r.svg.png" | ||
/> | ||
</figure> | ||
<div class="summary"> | ||
<h3>Dot product, angle, and length</h3> | ||
<p class="paragraph"> | ||
The dot product of two vectors \(A = [A1, A2, A3]\) and \(B = [B1, B2, | ||
B3]\) is defined as : <br /><br /> | ||
\({\displaystyle \mathbf {A} \cdot \mathbf {B} }\) | ||
\(=A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}.\) | ||
</p> | ||
<p class="paragraph"> | ||
The magnitude of a vector \(A\) is denoted by \(||A||\). The dot product | ||
of a vector \(A = [A1, A2, A3]\) with itself is <br /><br /> | ||
\({\displaystyle \mathbf {A} \cdot \mathbf {A} =}\) \(\|\mathbf {A} | ||
\|^{2}=A_{1}^{2}+A_{2}^{2}+A_{3}^{2},\) <br /> | ||
which gives \({\displaystyle \|\mathbf {A} \|={\sqrt {\mathbf {A} \cdot | ||
\mathbf {A} }}=}\) \({\sqrt {A_{1}^{2}+A_{2}^{2}+A_{3}^{2}}}\) | ||
</p> | ||
<p class="paragraph"> | ||
Without reference to the components of the vectors, the dot product of | ||
two non-zero Euclidean vectors \(A \) and \( B\) is given by | ||
<br /><br /> | ||
\(\mathbf {A} \cdot \mathbf {B} =\|\mathbf {A} \|\,\|\mathbf {B} \|\cos | ||
\theta ,\) <br /><br />where \(θ\) is the angle between \(A\) and \(B\). | ||
</p> | ||
</div> | ||
</body> | ||
<style> | ||
body { | ||
padding: 20px; | ||
background-color: white; | ||
margin: 0px; | ||
font-family: sans-serif; | ||
} | ||
|
||
figcaption { | ||
color: black; | ||
} | ||
|
||
h1, | ||
h2, | ||
h3, | ||
h4 { | ||
color: black; | ||
} | ||
|
||
.ul { | ||
color: black; | ||
} | ||
|
||
.ul > li { | ||
margin-bottom: 10px; | ||
} | ||
|
||
.header { | ||
text-align: center; | ||
color: rgb(180, 9, 152); | ||
margin-bottom: 20px; | ||
} | ||
|
||
.subHeader { | ||
font-size: 20px; | ||
font-weight: bold; | ||
text-align: left; | ||
color: indigo; | ||
} | ||
|
||
.paragraph { | ||
color: black; | ||
margin-bottom: 10px; | ||
} | ||
|
||
.logGraph { | ||
height: 250px; | ||
width: 100%; | ||
max-width: 450px; | ||
} | ||
|
||
figure { | ||
margin: 30px 0px; | ||
} | ||
|
||
figcaption { | ||
color: gray; | ||
font-size: 13px; | ||
text-align: center; | ||
} | ||
|
||
.note { | ||
width: 90%; | ||
max-height: 30vh; | ||
border: 0.5px solid rgb(224, 224, 224); | ||
overflow: scroll; | ||
border-radius: 5px; | ||
background: #fff; | ||
flex-direction: column; | ||
justify-content: flex-start; | ||
align-items: flex-start; | ||
box-shadow: 0 1px 1px rgba(0, 0, 0, 0.15), 0 10px 0 -5px #eee, | ||
0 10px 1px -4px rgba(0, 0, 0, 0.15), 0 20px 0 -10px #eee, | ||
0 20px 1px -9px rgba(0, 0, 0, 0.15); | ||
|
||
padding: 10px; | ||
} | ||
|
||
.note-list { | ||
width: 100%; | ||
} | ||
|
||
.notes { | ||
margin: 0px; | ||
padding-bottom: 8px; | ||
color: rgb(17, 17, 248); | ||
} | ||
|
||
::-webkit-scrollbar { | ||
width: 6px; | ||
height: 6px; | ||
} | ||
|
||
.summary { | ||
background-color: #58427c; | ||
background-image: linear-gradient(316deg, #58427c 0%, #746cc0 74%); | ||
padding: 15px; | ||
margin: 25px 0px; | ||
border-radius: 6px; | ||
border-left: 6px solid #fd02be; | ||
} | ||
|
||
::-webkit-scrollbar-thumb { | ||
border-radius: 4px; | ||
-webkit-box-shadow: inset 0 0 3px rgba(0, 0, 0, 0.5); | ||
} | ||
|
||
.theorem { | ||
width: 90%; | ||
display: block; | ||
border: 1px solid rgb(245, 214, 131); | ||
background-color: rgb(245, 214, 131); | ||
padding: 10px; | ||
border-radius: 5px; | ||
margin: 20px 0px; | ||
color: black; | ||
border-left: 5px solid red; | ||
} | ||
|
||
.result { | ||
font-size: 16px; | ||
font-weight: bold; | ||
color: rgb(32, 0, 75); | ||
} | ||
</style> | ||
</html> |
Oops, something went wrong.