Skip to content

Code for <Category Contrast for Unsupervised Domain Adaptation in Visual Tasks> in CVPR 2022

License

Notifications You must be signed in to change notification settings

jxhuang0508/CaCo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2022] Category Contrast for Unsupervised Domain Adaptation in Visual Tasks

Paper

Category Contrast for Unsupervised Domain Adaptation in Visual Tasks
Jiaxing Huang, Dayan Guan, Xiao Aoran, Shijian Lu, Ling Shao
School of Computer Science Engineering, Nanyang Technological University, Singapore
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2022.

If you find this code/paper useful for your research, please cite our paper:

@inproceedings{huang2022category,
  title={Category Contrast for Unsupervised Domain Adaptation in Visual Tasks},
  author={Huang, Jiaxing and Guan, Dayan and Xiao, Aoran and Lu, Shijian and Shao, Ling},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Installation

  1. Conda enviroment:
conda create -n caco python=3.6
conda activate caco
conda install -c menpo opencv
pip install torch==1.0.0 torchvision==0.2.1
  1. Clone the ADVENT:
git clone https://github.com/valeoai/ADVENT.git
pip install -e ./ADVENT
  1. Clone the repo:
https://github.com/jxhuang0508/CaCo.git
pip install -e ./CaCo
  1. Install environment:
conda env create -f ./caco_proda_finetune/caco_pro_ft.yml
conda env create -f ./caco_vanilla_finetune/caco_van.yml

Prepare Dataset

  • GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
CaCo/data/GTA5/                               % GTA dataset root
CaCo/data/GTA5/images/                        % GTA images
CaCo/data/GTA5/labels/                        % Semantic segmentation labels
...
  • Cityscapes: Please follow the instructions in Cityscape to download the images and validation ground-truths. The Cityscapes dataset directory should have this basic structure:
CaCo/data/Cityscapes/                         % Cityscapes dataset root
CaCo/data/Cityscapes/leftImg8bit              % Cityscapes images
CaCo/data/Cityscapes/leftImg8bit/val
CaCo/data/Cityscapes/gtFine                   % Semantic segmentation labels
CaCo/data/Cityscapes/gtFine/val
...

Pre-trained models

Pre-trained models can be downloaded here and put DeepLab_resnet_pretrained_imagenet.pth and gta_source_only_pretrained.pth into CaCo/pretrained_models, and caco_stage1.pth into CaCo/caco_vanilla_finetune/snapshots/caco_stage1.

Training

To train CaCo + ProDA (~58 mIoU):

# step 1: train CaCo warmup
conda activate caco
cd CaCo/caco/scripts
# train
python train_caco.py --cfg configs/CaCo.yml
# test
python test.py --cfg configs/CaCo.yml
# step 2: generate pseudo labels to transfer to ProDA
conda activate caco_van
cd CaCo/caco_vanilla_finetune
python generate_plabel_cityscapes_advent_caco.py  --restore-from ./snapshots/caco_stage1/caco_stage1.pth

# Step 3: manually copy the caco-generated pseudo labels into ``CaCo/caco_proda_finetune/Pseudo/train_all```.
# Step 4: train CaCo + Proda:
conda activate caco_pro_ft
cd CaCo/caco_proda_finetune
# Stage 0: restore CaCo network with generated pseudo labels by warm up  
python train.py --name gta2citylabv2_warmup --stage warm_up --freeze_bn --gan LS --lr 2.5e-4 --adv 0.01 --no_resume --used_save_pseudo --path_LP ./Pseudo/train_all
# Stage 1:  
python generate_pseudo_label.py --name gta2citylabv2_warmup_soft --soft --resume_path ./logs/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast  
python calc_prototype.py --resume_path ./logs/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl  
python train.py --name gta2citylabv2_stage1Denoise --used_save_pseudo --ema --proto_rectify --moving_prototype --path_soft Pseudo/gta2citylabv2_warmup_soft --resume_path ./logs/gta2citylabv2_warmup/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --proto_consistW 10 --rce --regular_w 0.1
# Stage 2:  
python generate_pseudo_label.py --name gta2citylabv2_stage1Denoise --flip --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast  
python train.py --name gta2citylabv2_stage2 --stage stage2 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage1Denoise --resume_path ./logs/gta2citylabv2_stage1Denoise/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --no_resume  
# Stage 3:  
python generate_pseudo_label.py --name gta2citylabv2_stage2 --flip --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --no_droplast --bn_clr --student_init simclr  
python train.py --name gta2citylabv2_stage3 --stage stage3 --used_save_pseudo --path_LP Pseudo/gta2citylabv2_stage2 --resume_path ./logs/gta2citylabv2_stage2/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl --S_pseudo 1 --threshold 0.95 --distillation 1 --finetune --lr 6e-4 --student_init simclr --bn_clr --ema_bn

To train CaCo (~50 mIoU):

# Finetune CaCo warm up with vanilla retraining
conda activate caco_van
cd CaCo/caco_vanilla_finetune
python train_ft_advent_caco.py --snapshot-dir ./snapshots/CaCo_stage2 \  
--restore-from ./snapshots/caco_stage1/caco_stage1.pth \  
--drop 0.2 --warm-up 5000 --batch-size 9 --learning-rate 1e-4 --crop-size 512,256 --lambda-seg 0.1 --lambda-adv-target1 0 \  
--lambda-adv-target2 0 --lambda-me-target 0 --lambda-kl-target 0 --norm-style gn --class-balance --only-hard-label 80 \  
--max-value 7 --gpu-ids 0,1,2 --often-balance  --use-se  --input-size 1280,640  --train_bn  --autoaug False --save-pred-every 1000

# Test best
./train_caco_s2.sh

To train gta_source_only_pretrained.pth (~ 39 mIoU):

# Train
conda activate caco
cd CaCo/caco/scripts
python train.py --cfg configs/source_only.yml
# Test
python test.py --cfg configs/source_only.yml

Evaluation over Pretrained models

To evaluate CaCo + ProDA (~58 mIoU): Download the pretrained model (58.2 mIoU) and save it in ./pretrained/gta2citylabv2_stage3. Then run the command

conda activate caco_pro_ft
cd CaCo/caco_proda_finetune
python test.py --bn_clr --student_init simclr --resume ./pretrained/gta2citylabv2_stage3/from_gta5_to_cityscapes_on_deeplabv2_best_model.pkl

Related Works

We also would like to thank great works as follows:

Contact

If you have any questions, please contact: [email protected]

About

Code for <Category Contrast for Unsupervised Domain Adaptation in Visual Tasks> in CVPR 2022

Resources

License

Stars

Watchers

Forks

Packages

No packages published