Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
Yifan Yang committed Aug 7, 2023
1 parent 1ee251c commit 1398e07
Show file tree
Hide file tree
Showing 40 changed files with 7,479 additions and 0 deletions.
8 changes: 8 additions & 0 deletions egs/bengaliai_speech/ASR/decode.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
for ((avg=17; avg<=21; avg=$avg+1)); do
./zipformer/decode.py \
--epoch 120 \
--avg $avg \
--exp-dir ./zipformer/exp \
--max-duration 2000 \
--decoding-method greedy_search
done
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
from datetime import datetime
from pathlib import Path

import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)

parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)

parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the train subset",
)

parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)

parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)

return parser.parse_args()


def compute_fbank_bengaliai_speech_splits(args):
num_splits = args.num_splits
output_dir = f"data/fbank/bengaliai_speech_train_split"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"

num_digits = 8

start = args.start
stop = args.stop
if stop < start:
stop = num_splits

stop = min(stop, num_splits)

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")

set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)

for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing train split: {idx}")

cuts_path = output_dir / f"bengaliai_speech_cuts_train.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue

raw_cuts_path = output_dir / f"bengaliai_speech_cuts_train_raw.{idx}.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Splitting cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/bengaliai_speech_feats_train_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)


def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_bengaliai_speech_splits(args)


if __name__ == "__main__":
main()
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
This file computes fbank features of the Bengali.AI Speech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""

import argparse
import logging
import os
from pathlib import Path
from typing import Optional

import torch
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def compute_fbank_bengaliai_speech_valid_test():
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
num_workers = 42
batch_duration = 600

subsets = ("valid", "test")

device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))

logging.info(f"device: {device}")

for partition in subsets:
cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{partition} already exists - skipping.")
continue

raw_cuts_path = output_dir / f"bengaliai_speech_cuts_{partition}_raw.jsonl.gz"

logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)

logging.info("Splitting cuts into smaller chunks")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)

logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/bengaliai_speech_feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)

logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_bengaliai_speech_valid_test()
1 change: 1 addition & 0 deletions egs/bengaliai_speech/ASR/local/prepare_lang_bpe.py
124 changes: 124 additions & 0 deletions egs/bengaliai_speech/ASR/local/preprocess_bengaliai_speech.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import re
from pathlib import Path
from typing import Optional

from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)

return parser.parse_args()


def normalize_text(utt: str) -> str:
opr_and_punc = "=\+\-\*\/%<>×÷" + "।,;:\?!'\.\"-\[\]\{\}\(\)–—―~"
return re.sub(r"[{0}]+".format(opr_and_punc), "", utt).upper()


def preprocess_bengaliai_speech(
dataset: Optional[str] = None,
):
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
output_dir.mkdir(exist_ok=True)

if dataset is None:
dataset_parts = (
"train",
"valid",
"test",
)
else:
dataset_parts = dataset.split(" ", -1)

logging.info("Loading manifest")
prefix = f"bengaliai_speech"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix=suffix,
prefix=prefix,
)
assert manifests is not None

assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)

for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue

logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
if sup.text is None:
continue
text = str(sup.text)
orig_text = text
sup.text = normalize_text(sup.text)
text = str(sup.text)
if len(orig_text) != len(text):
logging.info(
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
)

# Create long-recording cut manifests.
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
).resample(16000)

# Run data augmentation that needs to be done in the
# time domain.
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)


def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
preprocess_bengaliai_speech(
dataset=args.dataset,
)
logging.info("Done")


if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions egs/bengaliai_speech/ASR/local/train_bpe_model.py
1 change: 1 addition & 0 deletions egs/bengaliai_speech/ASR/local/validate_bpe_lexicon.py
Loading

0 comments on commit 1398e07

Please sign in to comment.