- contentGenerationForm/: Contains the logic for querying GPT to generate content.
queryGPT.py
: Contains thequery
function used to generate content.
- modelForm/: Contains the logic for model content retrieval and generation.
modelContentRetrieval.py
: Handles retrieval of model content.modelGeneration.py
: Handles generation of model content.
- ui.py: The main application file that sets up the Streamlit interface.
- environment.yml: Conda environment configuration file.
- .env: Environment variables file.
- .gitignore: Git ignore file.
- README.md: Project documentation.
-
Clone the repository:
git clone <repository-url> cd linkedinPostGenerator
-
Create and activate a Conda environment:
conda env create -f environment.yml conda activate linkedinPostGenerator
-
Install the required packages:
pip install -r requirements.txt
-
Run the Streamlit application:
streamlit run ui.py
-
Open your web browser and navigate to the provided local URL (usually
http://localhost:8501
). -
Use the sidebar forms to input the necessary information:
- Model Form: Specify the model influencer.
- Content Generation Form: Provide the temperature, max tokens, context, and content for the post.
-
Click the "Write" button to generate the LinkedIn post.
- Fork the repository.
- Create a new branch (
git checkout -b feature-branch
). - Make your changes.
- Commit your changes (
git commit -m 'Add some feature'
). - Push to the branch (
git push origin feature-branch
). - Open a pull request.
This project is licensed under the MIT License.