Skip to content

kehan777/ab-gen

Repository files navigation

Antibody library design with Transformer and Deep Reinforcement Learning

This is the source code for AB-Gen, a tool for antibody library design. It can efficiently explore the antibody space and design CDRH3 sequences that fulfill multi-property constraints.

Pipeline

Installation

Clone the repository

git clone [email protected]:charlesxu90/ab-gen.git
cd ab-gen

Create environment

conda env create -f environment.yml
conda activate ab-env

Download dataset and pretrained models

git lfs pull

Install netMHCIIpan

  1. Download NetMHCIIpan 4.1 as shown in the guide.
  2. Modify NMHOME in /netMHCIIpan-4.1/netMHCIIpan file to be your unzipped folder, e.g.
setenv	NMHOME	~/Desktop/netMHCIIpan-4.1

Test if netMHCIIpan-4.1 works properly:

python -m agent.scoring.MHCAffinity

Running the code

Generate from pretrained models

# Prior model
python generate.py --model_path data/models/Prior_10_1.704.pt --out_file result/prior/10k_samples.txt

# Agent HER2 model
python generate.py --model_path data/models/Agent_her2_final.pt --out_file result/agent/agent_oas_her2/10k_samples.txt

# Agent MPO model
python generate.py --model_path data/models/Agent_mpo_final.pt --out_file result/agent/agent_oas_mpo/10k_samples.txt

Reproduce the figures

Run jupyter-lab in command line. Then open each jupyter notebook to reproduce the figures.

License

This code is licensed under MIT License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published