Skip to content

Leetcode, Codility and GeekforGeeks algorithms exercises written in Golang.

License

Notifications You must be signed in to change notification settings

kimi0230/LeetcodeGolang

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Leetcode in Golang

Build latest tag Build my gitbook and deploy to gh-pages pages-build-deployment

Leetcode, Codility , GeekforGeeks algorithms exercises written in Golang.

https://kimi0230.github.io/LeetcodeGolang/


leetcode Content

Data Structure

Array & String

No. Title Solution Difficulty Time Space Topic
0001 Two Sum Go Easy O(n) O(n) Array
0003 Longest Substring Without Repeating Characters Go Medium O(n) O(1) Array, Sliding Window
0015 3 Sum Go Medium O(n^2) O(n) Array
0027 Remove Element Go Easy O(n) O(1) Array
0035 Search Insert Position Go Easy O(n), O(logn) O(1) Array
0049 Search Insert Position Go Medium O(kn) O(kn) Array
0059 Spiral Matrix II Go Medium O(n) O(n^2) Array
0088 Merge Sorted Array Go Easy O(n) O(1) Array
0217 0217.Contains Duplicate Go Easy O(n) O(n) Array
0242 0242.Valid Anagram Go Easy O(n) O(n) Array
0409 409. Longest Palindrome Go Easy O(n) O(1) Array
0380 0380.Insert Delete GetRandom O(1) Go Medium O(1) O(n) Array
0381 0381.Insert Delete GetRandom O(1) Duplicates allowed Go Medium O(1) O(n) Array
0412 0412.Fizz Buzz Go Easy O(n) O(n) Array, string
1195 1195.Fizz Buzz Multithreaded Go Medium O(n) Array, string,Concurrency
0238 238. Product of Array Except Self Go Medium O(n) Array, string, Prefix Sum
0128 128. Longest Consecutive Sequence Go Medium O(n) O(n) Array, Hash Table, Union Find

Matrix


Linked List

No. Title Solution Difficulty Time Space Topic
0019 Remove Nth Node From End of List Go Medium O(n) O(1) Linked List, Two Pointers
0141 Linked List Cycle Go Easy O(n) O(1) Linked List, Two Pointers
0142 Linked List Cycle II Go Medium O(n) O(1) Linked List, Two Pointers
0203 Remove Linked List Elements Go Easy O(n) O(1) Linked List
0206 Reverse Linked List Go Easy O(n) O(1) Linked List
0876 Middle of the Linked List Go Easy Linked List, Two Pointers
0021 Merge Two Sorted Lists Go Easy O(log n) O(1) Linked List
0002 Add Two Number Go Medium O(max(m,n)) O(1) Linked List

HashSet & HashMap


Stack & Queue

No. Title Solution Difficulty Time Space Topic
0020 Valid Parentheses Go Easy O(n) O(n) Stack
0094 Binary Tree Inorder Traversal Go Medium O(n) O(1) Stack

Heap & Priority Queue

Heap 總是能讓整棵樹當中最大或最小值維持在root節點上

Heap 有幾個特色:
  • 常見架構是像 binary tree 那樣
  • 保持 balanced
  • max heap 的 root 是最大值;min heap 的 root 則是最小值
  • 雖然是 tree,卻很適合放在 array 中處理
heap sort

根據定義 heap 的 root 一定是最大(假設是 max heap),也就是說,無序數列經過 heapify 再作 n 次 root deletion 取出最大值,就可以得到排序的結果。 最後就得到 heap sort 的 worst case 時間複雜度 O(nlogn) 的結果。 可是 quick sort 的 worst case 時間複雜度是 O(n²),怎麼 quick sort 的時間複雜度比較糟糕卻比較受歡迎? google 的結果是說 heap sort 比較不利於 caching 對於 spatial locality 機制,蠻有道理的阿。

No. Title Solution Difficulty Time Space Topic
0703 Kth Largest Element in a Stream Go Easy O(K + (N-K)logK) O(k) Heap, Priority Queue
1046 Last Stone Weight Go Easy O(nlogn) O(n) Heap, Priority Queue
0347 Top K Frequent Elements Go Medium O(Nlog⁡k) O(n) Heap, Priority Queue, Quick Sort

Disjoint Set Union

Trie

Binary Indexed Tree

Design Data Structures


Algorithm

Greedy


Sort

No. Title Solution Difficulty Time Space Topic
0075 Sort Colors Go Medium O(n) O(1) Sort
0215 Kth Largest Element in an Array Go Medium O(n) O(logn) Sort

Multiple Pointers


Backtracking (回溯法). DFS

DFS. 解決一個回溯問題, 實際上就是一個決策樹的遍歷過程. 算是一個暴力的窮舉算法

  1. 路徑:也就是已經做出的選擇。
  2. 選擇列表:也就是你當前可以做的選擇。
  3. 結束條件:也就是到達決策樹底層,無法再做選擇的條件。
  4. https://www.bilibili.com/video/BV1P5411N7Xc
result = []
def backtrack(路徑, 選擇列表):
    if 滿足結束條件:
        result.add(路徑)
        return
    
    for 選擇 in 選擇列表:
        做選擇(前序)
        backtrack(路徑, 選擇列表)
        撤銷選擇(後序)
No. Title Solution Difficulty Time Space Topic
0046 Permutations (全排列) Go Medium O(n) O(n) Backtracking
0078 Subsets Go Medium O(n^2) O(n) Backtracking

DFS & BFS

找最短路徑用BFS, 其他時用DFS用得多一些, 因為遞迴較好寫

假設有棵滿的二叉樹,節點數為 N. 對DFS來說空間複雜度就是遞迴, 最壞的情況就是樹的高度 O(log N) BFS算法, Queue每次都會存二叉樹一層的節點, 最壞的情況下空間複雜度應該就是樹的最下層的數量, 也就是 N/2. 空間複雜度 O(N)

DFS(深度優先搜索)通常使用堆棧(Stack)來實現。在DFS中,您首先處理一個節點,然後將其子節點按某種順序推入堆棧中,接著繼續處理堆棧頂部的節點,直到堆棧為空。 BFS(廣度優先搜索)則使用隊列(Queue)來實現。在BFS中,您首先處理一個節點,然後將其子節點按某種順序排隊,接著繼續處理隊列的前端節點,直到隊列為空。

No. Title Solution Difficulty Time Space Topic
0695 Max Area of Island Go Medium O(m*n) O(m*n) DFS & BFS
0733 Flood Fill Go Easy O(m*n) O(m*n) DFS & BFS

Dynamic Programming

動態規劃問題的一般形式就是求最值, 最長遞增子序列, 最小編輯距離等. 核心問題是窮舉

  1. 重疊子問題
    1. memory table
    2. DP table
  2. 最優子結構
  3. 狀態轉移方程式
    1. 這問題的 base case (最簡單情況) 是什麼?
    2. 這問題有什麼狀態
    3. 對於每個狀態, 可以做出什麼選擇, 使得狀態發生改變
    4. 如何定義 dp 數組/函數的含義來表現狀態選擇?
替換 /跳過
dp[i-1][j-1]
刪除
dp[i-1][j]
插入
dp[i][j-1]
dp[i][j]
# 初始化 base case
dp[0][0][...] = base
# 進行狀態轉移
for 狀態1 in 狀態1的所有取值for 狀態2 in 狀態2的所有取值for ...
            dp[狀態1][狀態2][...] = 求最值(選擇1選擇2...)
No. Title Solution Difficulty Time Space Topic
0053 Maximum Subarray Go Easy O(n) O(n) Dynamic Programming
0072 0072. Edit Distance Go Hard Dynamic Programming
0300 Longest-Increasing-Subsequence Go Medium 方法一:O(n^2) 方法二:O(nlogn) O(n) Dynamic Programming
0322 Coin Change Go Medium O(nm) O(n) Dynamic Programming
0354 Russian Doll Envelope Go Hard Dynamic Programming
0509 Fibonacci Number Go Easy 很多解法 很多解法 Dynamic Programming
0070 0070.Climbing Stairs Go Easy O(n) O(n) Dynamic Programming
0746 0746.Min Cost Climbing Stairs Go Easy O(n) O(1) Dynamic Programming

Sliding Window

維護一個窗口, 不斷滑動

void slidingWindow(string s, string t){
    unordered map<char,int>need, window;
    for (char c:t) need[c++]
    int left = 0 , right = 0
    int valid = 0

    // 先移動 right 再移動 left. 直到right到達 string的末端
    while(right < s.size()){
        // c是將移入窗口的字符
        char c = s[right]
        // 右移窗口 
        right++
        // 進行窗口內數據的一系列更新
        // ...

        /*** 用來debug 輸出位置 ***/
        printf("window: [%d, %d)\n",left,right)
        /************************/

        // 判斷左側窗口是否收縮
        while(window needs shrink){
           // d是將移出窗口的字符
           // 左移窗口 
            left++
            // 進行窗口內數據的一系列更新
            // ...
        }
    }
}
No. Title Solution Difficulty Time Space Topic
0209 Minimum Size Subarray Sum Go Medium O(n^2) / O(n) / O(nlog n) O(1) / O(1) / O(n) Sliding Window
0438 Find All Anagrams in a String Go Medium O(n) O(1) Sliding Window
0567 Permutation in String Go Medium O(n) O(1) Sliding Window

Sweep Line


Rolling Sum


Two Pointers

只要array有序, 就應該想到雙指針技巧 分為兩類 1. "快,慢指針" 2. "左,右指針"

  1. 快,慢指針: 主要解決 linkedlist 問題, 典型的判斷 linkedlist 是否包含環
  2. 左,右指針: 主要解決array(或 string)中的問題, 如二分搜尋.

https://labuladong.gitee.io/algo/2/21/57/

No. Title Solution Difficulty Time Space Topic
0019 Remove Nth Node From End of List Go Medium O(n) O(1) Linked List, Two Pointers
0141 Linked List Cycle Go Easy O(n) O(1) Linked List, Two Pointers
0283 Move Zeroes Go Easy O(n) O(1) Two Pointers
0142 Linked List Cycle II Go Medium O(n) O(1) Linked List, Two Pointers
0344 Reverse String Go Easy O(n) O(1) Two Pointers
0876 Middle of the Linked List Go Easy Linked List, Two Pointers
0011 Container With Most Water Go Medium Two Pointers
0074 Search a 2D Matrix Go Medium Binary Search, Two Pointers

Bit Manipulation∂

No. Title Solution Difficulty Time Space Topic
0693 Binary Number with Alternating Bits Go Easy O(n)/ O(1) O(1) / O(1) Bit Manipulation

Union Find

No. Title Solution Difficulty Time Space Topic
0721 Accounts Merge Go Easy O(n) / O(n log n) O(n) / O(n) Union Find

Breadth First Search

  • DFS 算法可以被認為是回溯算法, BFS算法都是用Queue這種數據結構, 每次將一個截短周圍的所有節點加入Queue.
  • BFS 找到的路徑一定是最短的, 但是代價是空間複雜度比DFS大. BFS vs DFS
  • 優化: 雙向 BFS 優化, 在 while 開始時做一個判斷. 讓每次都選擇較小的集合進行擴散, 那麼佔用的空間增長速度就會慢一些, 盡可能以最小的空間代價產生 curDepth 和 nextDepth 的交集 無論單向的 BFS 或是 雙向BFS, 優化過的BFS 空間複雜度都是一樣的
// 計算從起點 start 到 終點 target 的最點距離
int BFS(Node start, Node targe){
    Queue<Node> q; // 核心數據結構
    Set<Node> visited; // 避免走回頭路
    
    q.offer(start); // 將起點加入 Queue
    visited.add(start);
    int step = 0; // 紀錄擴散的步數

    while(q not empty) {
        int sz = q.size();
        // 當前 Queue 中的所有節點向四周擴散
        for (int i = 0 ; i < sz; i++) {
            Node cur = q.poll();
            // 這裡判斷是否到達終點
            if (cur is target) {
                return step;
            }

            // 將cur 的相鄰節點加入 Queue
            for (Node x : cur.adj()) {
                if (x not in visited) {
                    q.offer(x);
                    visited.add(x);
                }
            }
        }
        // 在這裡更新步數
        step++
    }
}
No. Title Solution Difficulty Time Space Topic
0310 Minimum Height Trees Go Medium Breadth First Search
0752 752. Open the Lock Go Medium Breadth First Search

Binary Search

分析二分搜尋技巧: 不要出現 else, 而是把所有情況用 else if 寫清楚. 計算 mid 時需要防止溢出

int binarySearch(int[] nums, int target){
    int left = 0 , right = ...;
    while(...) {
        int mid = left + (right - left)/2
        if (nums[mid] == target){
            ...
        } else if (nums[mid] < target){
            left = ...
        } else if (nums[mid] > target){
            right = ...
        }
    }
    return ...;
}

將搜尋區間全部統一成兩端都閉, 方便記憶 [letf,right]

func Search(nums []int, target int) int {
	lenght := len(nums)
	if lenght <= 0 {
		return -1
	}
	left, right := 0, lenght-1

	for left <= right {
		mid := (right-left)/2 + left
		if nums[mid] == target {
			return mid
		} else if nums[mid] < target {
			// 找右邊
			left = mid + 1
		} else if nums[mid] > target {
			// 找左邊
			right = mid - 1
		}
	}
	// 都沒找到
	return -1
}

// 有點類似 nums 小於 target的元素有幾個
func LeftBound(nums []int, target int) (index int) {
	lenght := len(nums)
	if lenght <= 0 {
		return -1
	}
	left, right := 0, lenght-1

	for left <= right {
		// 除以2
		// mid := left + (right-left)>>1
		mid := int(uint(right+left) >> 1)
		if nums[mid] == target {
			// 要繼續找左邊, 所以把右邊變小
			right = mid - 1
		} else if nums[mid] < target {
			// 找右邊
			left = mid + 1
		} else if nums[mid] > target {
			// 找左邊
			right = mid - 1
		}
	}
	// 都沒找到 注意: left越界情況
	if left >= lenght || nums[left] != target {
		return -1
	}
	return left
}

// 有點類似 nums 大於 target的元素有幾個
func RightBound(nums []int, target int) (index int) {
	lenght := len(nums)
	if lenght <= 0 {
		return -1
	}
	left, right := 0, lenght-1

	for left <= right {
		// 除以2
		// mid := left + (right-left)>>1
		mid := int(uint(right+left) >> 1)
		if nums[mid] == target {
			// 注意:要繼續找右邊, 所以把左邊變大=mid+1
			left = mid + 1
		} else if nums[mid] < target {
			// 找右邊
			left = mid + 1
		} else if nums[mid] > target {
			// 找左邊
			right = mid - 1
		}
	}
	// 都沒找到 注意:right越界情況
	if right < 0 || nums[right] != target {
		return -1
	}
	return right
}

for left <= right {}

  • 此方法在迭代終止時,left 和 right 指針指向同一個位置。
  • 此方法會包括最後一個可能的候選解,在某些情況下可能更容易理解和實現。
  • 在應對邊界情況時可能更為方便,例如當 left 和 right 指向同一位置時,這時可能需要進一步處理。

for left < right {}

  • 此方法在迭代終止時,left 和 right 指針指向相鄰位置。
  • 此方法會排除最後一個可能的候選解,當要求嚴格小於或大於某個值時可能更合適。
  • 在一些情況下,可能會更高效,因為在每次循環中只需要比較一次 left 和 right,而不需要再處理當兩者相等時的情況。
func search(nums []int, target int) int {
    left, right := 0, len(nums)-1
    
    for left < right {
        mid := int(uint(right+left)>>1)
        if nums[mid]==target{
            return mid
        }else if (nums[mid]<target){
            left = mid+1
        }else{
            right = mid-1
        }
    }
    if left == right && nums[left] == target {
        return left
    }
    return -1
}
No. Title Solution Difficulty Time Space Topic
0704 704. Binary Search Go Easy 最差:O(long n)
最佳O(1)剛好在中間
迭代: O(1)
遞迴O(log n)
Binary Search
0875 875. Koko Eating Bananas Go Medium O(n log m) O(1) Binary Search
0153 153. Find Minimum in Rotated Sorted Array Go Medium O(log n) O(1) Binary Search
0033 33. Search in Rotated Sorted Array Go Medium O(log n) O(1) Binary Search
0034 34. Find First and Last Position of Element in Sorted Array Go Medium O(log n) O(1) Binary Search
0981 0981.Time Based Key-Value Store Go Medium O(log n) Binary Search

Minimax


Graph

Graph


Topological Sort


Tree

No. Title Solution Difficulty Time Space Topic
0226 Invert Binary Tree Go Easy O(n) O(1) Tree
0104 Maximum Depth of Binary Tree Go Easy O(n) O(1) Tree
0543 Diameter of Binary Tree Go Easy O(n) O(n), O(log(n)) Tree, DFS
0110 Balanced Binary Tree Go Easy O(n) O(1) Tree, DFS
0100 Same Tree Go Easy O(n) O(1) Tree
0105 Construct Binary Tree from Preorder and Inorder Traversal Go Medium O(n) O(n) Array

Tree Traversal


Binary Search Tree


Compputational Geometry


Selected Topics

Mathematics


Random


Bitwise Manipulation


Topic Title No. Solution Difficulty TimeComplexity SpaceComplexity
Sorting Find Minimum Difference Between Any Two Elements 0031 Go Basic O(n^2), O(n log n) O(n), O(n)

Codility Content

Topic Title Solution Difficulty TimeComplexity SpaceComplexity
Lesson 1 Iterations
Binary Gap
Go
Painless O(log n) O(1)
Lesson 2 Array
Cyclic Rotation
Go
Painless O(1) O(1)
Odd Occurrences In Array
Go
Painless O(n), O(n) O(n), O(1)
Lesson 3 Time Complexity
Frog Jmp
Go
Painless O(1) O(1)
Perm Missing Elem
Go
Painless O(n) O(1)
Tape Equilibrium
Go
Painless O(n) O(n)
Lesson 4 Counting Elements
Frog River One
Go
Painless O(n) O(n)
Max Counters
Go
Respectable O(n+m) O(n)
Missing Integer
Go
Respectable O(n) O(n)
Perm Check
Go
Painless O(n) O(n)
Lesson 5 Prefix Sums
Count Div
Go
Respectable O(1) O(1)
Genomic Range Query
Go
Respectable O(n+m) O(n)
MinAvg Two Slice
Go
Respectable O(n) O(n)
Passing Cars
Go
Painless O(n) O(1)
Lesson 6 Sorting
Distinct
Go
Painless O(nlogn) O(n)
Max Product of Three
Go
Painless O(nlogn) O(1)
Number Of Disc Intersections
Go
Respectable O(nlogn) O(n)
Triangle
Go
Painless O(nlogn) O(n)
Lesson 7 Stacks and Queues
Brackets
Go
Painless O(n) O(n)
Fish
Go
Painless O(n) O(n)
Nesting
Go
Painless O(n) O(1)
Stone Wall
Go
Painless O(n) O(n)
Lesson 8 Leader
Dominator
Go
Painless O(n) O(1)
EquiLeader
Go
Painless O(n) O(n)
Lesson 9 Maximum slice problem
Max Profit
Go
Painless O(n) O(1)
Max Slice Sum
Go
Painless O(n) O(n)
Max Double Slice Sum
Go
Respectable O(n) O(n)
Lesson 10 Prime and composite numbers
Count Factors
Go
Painless O(sqrt(n)) O(1)
Flags
Go
Respectable O(n) O(n)
MinPerimeterRectangle
Go
Painless O(sqrt(n))) O(1)
Peaks
Go
Respectable O( n*log( log(n) )) O(n)
Lesson 11 Sieve of Eratosthenes
(質數篩)
Count Non Divisible
Go
Respectable O(N * log(N)) O(n)
Count Semiprimes
Go
Respectable O(N*log(log(N))+M) O(N+M)
Lesson 12 Euclidean algorithm
(輾轉相除法 or 歐幾里得算法)
Chocolates By Numbers
Go
Painless O(log(N + M)) O(1)
Common Prime Divisors
Go
Respectable O(Z * log(max(A) + max(B))**2) O(1)
Lesson 13 Fibonacci numbers
FibFrog
Go
Respectable O(N * log(N)) O(N)
Ladder

Respectable
Lesson 14 Binary search algorithm
MinMaxDivision

Respectable
NailingPlanks

Respectable
Lesson 15 Caterpillar method
AbsDistinct

Painless
CountDistinctSlices

Painless
CountTriangles

Painless
MinAbsSumOfTwo

Respectable
Lesson 16 Greedy algorithms
MaxNonoverlappingSegments

Painless
TieRopes

Painless
Lesson 17 Dynamic programming
MinAbsSum

Ambitious
NumberSolitaire

Respectable

Reference