title | subtitle | date | lastmod | draft | author | authorLink | description | license | images | tags | categories | featuredImage | featuredImagePreview | hiddenFromHomePage | hiddenFromSearch | twemoji | lightgallery | ruby | fraction | fontawesome | linkToMarkdown | rssFullText | toc | code | math | mapbox | share | comment | library | seo | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0053.Maximum Subarray |
2024-02-23T25:04:00+08:00 |
2024-02-23T25:04:00+08:00 |
false |
Kimi.Tsai |
0053.Maximum-Subarray |
|
|
false |
false |
false |
true |
true |
true |
true |
false |
false |
|
|
|
|
|
|
|
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
給定一個整數數組 nums ,找到一個具有最大和的連續子數組(子數組最少包含一個元素),返回其最大和。
- 這一題可以用 DP 求解也可以不用 DP。
- 題目要求輸出數組中某個區間內數字之和最大的那個值。
dp[i]
表示[0,i]
區間內各個子區間和的最大值,狀態轉移方程是dp[i] = nums[i] + dp[i-1] (dp[i- 1] > 0)
,dp[i] = nums[i] (dp[i-1] ≤ 0)
。
- https://books.halfrost.com/leetcode/ChapterFour/0001~0099/0053.Maximum-Subarray/
- https://leetcode-cn.com/problems/maximum-subarray/
package maximumsubarray
// MaxSubArrayDP : DP (dynamic programming)
func MaxSubArrayDP(nums []int) int {
if len(nums) == 0 {
return 0
}
if len(nums) == 1 {
return nums[0]
}
dp, res := make([]int, len(nums)), nums[0]
dp[0] = nums[0]
for i := 1; i < len(nums); i++ {
if dp[i-1] > 0 {
// 前一個和是正的 繼續加下去
dp[i] = nums[i] + dp[i-1]
} else {
// 前一個和是小於等於0 直接拿現在值取代
dp[i] = nums[i]
}
res = max(res, dp[i])
}
return res
}
// MaxSubArray1 : 模擬, 比DP快
func MaxSubArray1(nums []int) int {
if len(nums) == 1 {
return nums[0]
}
maxSum := 0
tmp := 0
for i := 0; i < len(nums); i++ {
tmp += nums[i]
if tmp > maxSum {
maxSum = tmp
}
if tmp < 0 {
tmp = 0
}
}
return maxSum
}
func max(a int, b int) int {
if a > b {
return a
}
return b
}
//TODO: 分治法�, 這個分治方法類似於「線段樹求解最長公共上升子序列問題」的pushUp操作