-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #49 from kozistr/test/utils
[Test] Add test cases for utils
- Loading branch information
Showing
3 changed files
with
81 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
__VERSION__ = '0.3.5' | ||
__VERSION__ = '0.3.6' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
from typing import List | ||
|
||
import numpy as np | ||
import torch | ||
from torch import nn | ||
|
||
from pytorch_optimizer.utils import ( | ||
clip_grad_norm, | ||
get_optimizer_parameters, | ||
has_overflow, | ||
normalize_gradient, | ||
unit_norm, | ||
) | ||
|
||
|
||
class Example(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.fc1 = nn.Linear(1, 1) | ||
self.norm1 = nn.LayerNorm(1) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
return self.norm1(self.fc1(x)) | ||
|
||
|
||
def test_has_overflow(): | ||
assert has_overflow(np.inf) | ||
assert has_overflow(np.nan) | ||
assert not has_overflow(torch.Tensor([1])) | ||
|
||
|
||
def test_normalized_gradient(): | ||
x = torch.arange(0, 10, dtype=torch.float32) | ||
|
||
np.testing.assert_allclose( | ||
normalize_gradient(x).numpy(), | ||
np.asarray([0.0000, 0.3303, 0.6606, 0.9909, 1.3212, 1.6514, 1.9817, 2.3120, 2.6423, 2.9726]), | ||
rtol=1e-4, | ||
atol=1e-4, | ||
) | ||
|
||
np.testing.assert_allclose( | ||
normalize_gradient(x.view(1, 10), use_channels=True).numpy(), | ||
np.asarray([[0.0000, 0.3303, 0.6606, 0.9909, 1.3212, 1.6514, 1.9817, 2.3120, 2.6423, 2.9726]]), | ||
rtol=1e-4, | ||
atol=1e-4, | ||
) | ||
|
||
|
||
def test_clip_grad_norm(): | ||
x = torch.arange(0, 10, dtype=torch.float32, requires_grad=True) | ||
x.grad = torch.arange(0, 10, dtype=torch.float32) | ||
|
||
np.testing.assert_approx_equal(clip_grad_norm(x), 16.881943016134134, significant=4) | ||
np.testing.assert_approx_equal(clip_grad_norm(x, max_norm=2), 16.881943016134134, significant=4) | ||
|
||
|
||
def test_unit_norm(): | ||
x = torch.arange(0, 10, dtype=torch.float32) | ||
|
||
np.testing.assert_approx_equal(unit_norm(x).numpy(), 16.8819, significant=4) | ||
np.testing.assert_approx_equal(unit_norm(x.view(1, 10)).numpy(), 16.8819, significant=4) | ||
np.testing.assert_approx_equal(unit_norm(x.view(1, 10, 1, 1)).numpy(), 16.8819, significant=4) | ||
np.testing.assert_approx_equal(unit_norm(x.view(1, 10, 1, 1, 1, 1)).numpy(), 16.8819, significant=4) | ||
|
||
|
||
def test_get_optimizer_parameters(): | ||
model: nn.Module = Example() | ||
wd_ban_list: List[str] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] | ||
|
||
before_parameters = list(model.named_parameters()) | ||
after_parameters = get_optimizer_parameters(model, weight_decay=1e-3, wd_ban_list=wd_ban_list) | ||
|
||
for before, after in zip(before_parameters, after_parameters): | ||
layer_name: str = before[0] | ||
if layer_name.find('bias') != -1 or layer_name in wd_ban_list: | ||
assert after['weight_decay'] == 0.0 |