-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added the conveter file for updated result format
- Loading branch information
1 parent
3b8826a
commit 0972e5e
Showing
1 changed file
with
165 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
# Import the required Module | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pdfplumber | ||
import csv | ||
|
||
# converting pdf to csv | ||
def pdf_to_csv(input_pdf, output_csv): | ||
with pdfplumber.open(input_pdf) as pdf: | ||
with open(output_csv, 'w', newline='') as csv_file: | ||
writer = csv.writer(csv_file) | ||
for page in pdf.pages: | ||
lines = page.extract_text().split('\n') | ||
for line in lines: | ||
writer.writerow([line]) | ||
|
||
input_pdf = "RN1.pdf" | ||
output_csv = "output.csv" | ||
pdf_to_csv(input_pdf, output_csv) | ||
|
||
df = pd.read_csv("output.csv") | ||
|
||
# Creating a DataFrame with one row of zeros for each column | ||
df1 = pd.DataFrame({ | ||
"Rollno" : [0], | ||
"EM_ISE" : [0], "EM_ESE" : [0], "EM_THEORY_TOT" : [0], "EM_TW" : [0], | ||
"SME_ISE" : [0], "SME_ESE" : [0], "SME_THEORY_TOT" : [0], "SME_TW" : [0], | ||
"BEE_ISE" : [0], "BEE_ESE" : [0], "BEE_THEORY_TOT" : [0], "BEE_TW" : [0], | ||
"EM1_ISE" : [0], "EM1_ESE" : [0], "EM1_THEORY_TOT" : [0], "EM1_TW" : [0], | ||
"EP_ISE" : [0], "EP_ESE" : [0], "EP_THEORY_TOT" : [0], "EP_TW" : [0], | ||
"BXE_ISE" : [0], "BXE_ESE" : [0], "BXE_THEORY_TOT" : [0], "BXE_TW" : [0], | ||
"EC_ISE" : [0], "EC_ESE" : [0], "EC_THEORY_TOT" : [0], "EC_TW" : [0], | ||
"PPS_ISE" : [0], "PPS_ESE" : [0], "PPS_THEORY_TOT" : [0], "PPS_TW" : [0], | ||
"SGPA" : [0] | ||
}) | ||
|
||
# for page 1 | ||
# identifying the course | ||
course_1 = df.iloc[11,0].split(' ')[0] | ||
course_2 = df.iloc[27,0].split(' ')[0] | ||
|
||
# code for result 1 | ||
if(course_1 == "101011-1"): | ||
# index for separating the marks of subjects | ||
a = df.iloc[11,0].split(' ') | ||
b = df.iloc[9,0].split(' ') | ||
c = df.iloc[12,0].split(' ') | ||
d = df.iloc[13,0].split(' ') | ||
e = df.iloc[14,0].split(' ') | ||
f = df.iloc[15,0].split(' ') | ||
g = df.iloc[16,0].split(' ') | ||
h = df.iloc[17,0].split(' ') | ||
i = df.iloc[18,0].split(' ') | ||
j = df.iloc[19,0].split(' ') | ||
k = df.iloc[20,0].split(' ') | ||
l = df.iloc[23,0].split(' ') | ||
|
||
new = pd.DataFrame({ | ||
"Rollno" : b[4], | ||
"EM_ISE" :a[2] , "EM_ESE" :a[4] , "EM_THEORY_TOT" :a[9] , "EM_TW" : c[4], | ||
"SME_ISE" :d[2] , "SME_ESE" :d[4] , "SME_THEORY_TOT" :d[9] , "SME_TW" :e[4] , | ||
"BEE_ISE" :f[2], "BEE_ESE" :f[4], "BEE_THEORY_TOT" :f[9] , "BEE_TW" :g[4] , | ||
"EM1_ISE" :h[2] , "EM1_ESE" :h[4] , "EM1_THEORY_TOT" :h[9] , "EM1_TW" : i[5], | ||
"EP_ISE" :j[2] , "EP_ESE" :j[4], "EP_THEORY_TOT" : j[9], "EP_TW" : k[4], | ||
"BXE_ISE" : [0], "BXE_ESE" :[0] , "BXE_THEORY_TOT" :[0] , "BXE_TW" : [0], | ||
"EC_ISE" : [0], "EC_ESE" :[0] , "EC_THEORY_TOT" : [0], "EC_TW" : [0], | ||
"PPS_ISE" :[0] , "PPS_ESE" : [0], "PPS_THEORY_TOT" : [0], "PPS_TW" : [0], | ||
"SGPA" : l[4] }) | ||
df1 = pd.DataFrame(pd.concat([df1,new],ignore_index = False)) | ||
|
||
if(course_1 == "102003-1"): | ||
# index for separating the marks of subjects | ||
a = df.iloc[11,0].split(' ') | ||
b = df.iloc[9,0].split(' ') | ||
c = df.iloc[12,0].split(' ') | ||
d = df.iloc[13,0].split(' ') | ||
e = df.iloc[14,0].split(' ') | ||
f = df.iloc[15,0].split(' ') | ||
g = df.iloc[16,0].split(' ') | ||
h = df.iloc[17,0].split(' ') | ||
i = df.iloc[18,0].split(' ') | ||
j = df.iloc[19,0].split(' ') | ||
k = df.iloc[20,0].split(' ') | ||
l = df.iloc[23,0].split(' ') | ||
|
||
new = pd.DataFrame({ | ||
"Rollno" : b[4], | ||
"EM_ISE" :[0] , "EM_ESE" :[0] , "EM_THEORY_TOT" :a[0] , "EM_TW" : [0], | ||
"SME_ISE" :a[2] , "SME_ESE" :a[4] , "SME_THEORY_TOT" :a[9] , "SME_TW" :c[4] , | ||
"BEE_ISE" :[0], "BEE_ESE" :[0], "BEE_THEORY_TOT" :[0] , "BEE_TW" :[0] , | ||
"EM1_ISE" :f[2] , "EM1_ESE" :f[4] , "EM1_THEORY_TOT" :f[9] , "EM1_TW" : g[5], | ||
"EP_ISE" :[0] , "EP_ESE" :[0], "EP_THEORY_TOT" : [0], "EP_TW" : [0], | ||
"BXE_ISE" : d[2], "BXE_ESE" :d[4] , "BXE_THEORY_TOT" :d[9] , "BXE_TW" : e[4], | ||
"EC_ISE" : h[2], "EC_ESE" :h[4] , "EC_THEORY_TOT" : h[9], "EC_TW" : i[4], | ||
"PPS_ISE" :j[2] , "PPS_ESE" : j[4], "PPS_THEORY_TOT" : j[9], "PPS_TW" : k[4], | ||
"SGPA" : l[4] }) | ||
df1 = pd.DataFrame(pd.concat([df1,new], ignore_index = False)) | ||
|
||
|
||
|
||
# code for result 2 | ||
if(course_2 == "101011-1"): | ||
# index for separating the marks of subjects | ||
a = df.iloc[27,0].split(' ') | ||
b = df.iloc[25,0].split(' ') | ||
c = df.iloc[28,0].split(' ') | ||
d = df.iloc[29,0].split(' ') | ||
e = df.iloc[30,0].split(' ') | ||
f = df.iloc[31,0].split(' ') | ||
g = df.iloc[32,0].split(' ') | ||
h = df.iloc[33,0].split(' ') | ||
i = df.iloc[34,0].split(' ') | ||
j = df.iloc[35,0].split(' ') | ||
k = df.iloc[36,0].split(' ') | ||
l = df.iloc[39,0].split(' ') | ||
|
||
new = pd.DataFrame({ | ||
"Rollno" : b[4], | ||
"EM_ISE" :a[2] , "EM_ESE" :a[4] , "EM_THEORY_TOT" :a[9] , "EM_TW" : c[4], | ||
"SME_ISE" :d[2] , "SME_ESE" :d[4] , "SME_THEORY_TOT" :d[9] , "SME_TW" :e[4] , | ||
"BEE_ISE" :f[2], "BEE_ESE" :f[4], "BEE_THEORY_TOT" :f[9] , "BEE_TW" :g[4] , | ||
"EM1_ISE" :h[2] , "EM1_ESE" :h[4] , "EM1_THEORY_TOT" :h[9] , "EM1_TW" : i[5], | ||
"EP_ISE" :j[2] , "EP_ESE" :j[4], "EP_THEORY_TOT" : j[9], "EP_TW" : k[4], | ||
"BXE_ISE" : [0], "BXE_ESE" :[0] , "BXE_THEORY_TOT" :[0] , "BXE_TW" : [0], | ||
"EC_ISE" : [0], "EC_ESE" :[0] , "EC_THEORY_TOT" : [0], "EC_TW" : [0], | ||
"PPS_ISE" :[0] , "PPS_ESE" : [0], "PPS_THEORY_TOT" : [0], "PPS_TW" : [0], | ||
"SGPA" : l[4] }) | ||
df1 = pd.DataFrame(pd.concat([df1,new],ignore_index = False)) | ||
|
||
|
||
if(course_2 == "102003-1"): | ||
# index for separating the marks of subjects | ||
a = df.iloc[27,0].split(' ') | ||
b = df.iloc[25,0].split(' ') | ||
c = df.iloc[28,0].split(' ') | ||
d = df.iloc[29,0].split(' ') | ||
e = df.iloc[30,0].split(' ') | ||
f = df.iloc[31,0].split(' ') | ||
g = df.iloc[32,0].split(' ') | ||
h = df.iloc[33,0].split(' ') | ||
i = df.iloc[34,0].split(' ') | ||
j = df.iloc[35,0].split(' ') | ||
k = df.iloc[36,0].split(' ') | ||
l = df.iloc[39,0].split(' ') | ||
|
||
|
||
new = pd.DataFrame({ | ||
"Rollno" : b[4], | ||
"EM_ISE" :[0] , "EM_ESE" :[0] , "EM_THEORY_TOT" :[0] , "EM_TW" : [0], | ||
"SME_ISE" :a[2] , "SME_ESE" :a[4] , "SME_THEORY_TOT" :a[9] , "SME_TW" :c[4] , | ||
"BEE_ISE" :[0], "BEE_ESE" :[0], "BEE_THEORY_TOT" :[0] , "BEE_TW" :[0] , | ||
"EM1_ISE" :f[2] , "EM1_ESE" :f[4] , "EM1_THEORY_TOT" :f[9] , "EM1_TW" : g[5], | ||
"EP_ISE" :[0] , "EP_ESE" :[0], "EP_THEORY_TOT" : [0], "EP_TW" : [0], | ||
"BXE_ISE" : d[2], "BXE_ESE" :d[4] , "BXE_THEORY_TOT" :d[9] , "BXE_TW" : e[4], | ||
"EC_ISE" : h[2], "EC_ESE" :h[4] , "EC_THEORY_TOT" : h[9], "EC_TW" : i[4], | ||
"PPS_ISE" :j[2] , "PPS_ESE" : j[4], "PPS_THEORY_TOT" : j[9], "PPS_TW" : k[4], | ||
"SGPA" : l[4] }) | ||
df1 = pd.DataFrame(pd.concat([df1,new],ignore_index = False)) | ||
|
||
else: | ||
print("Course not found") | ||
|
||
|
||
df1.to_csv("Output.csv",index = False) |