Skip to content

ku-nlp/bert-based-faqir

Repository files navigation

bert-based-faqir

FAQ retrieval system that considers the similarity between a user’s query and a question as well as the relevance between the query and an answer. The detail is on our paper (arxiv).

Requirements

tensorflow >= 1.11.0

Usage

Data

Download the BERT repository, BERT Japanese pre-trained model, QA pairs in Amagasaki City FAQ, testset (localgovFAQ) and samples of prediction results.

./download.sh

The data structure is below.

data
├── bert : the forked repository from BERT original repository *1
├── Japanese_L-12_H-768_A-12_E-30_BPE : BERT Japanese pre-trained model 
└── localgovfaq *2
    ├── qas : QA pairs in Amagasaki City FAQ
    ├── testset_segmentation.txt : the testset for evaluation
    └── samples : the retrieval results by TSUBAKI, BERT, and hybrid model

*1 We modified the original code of BERT so that it can deal with Japanese sentences and load our FAQ retrieval format. See ku-nlp/bert to check the differences from the original code.

*2 The detail about localgovFAQ is on localgovFAQ.md.

BERT application for FAQ retrieval

Generate dataset (train/test), finetuneing and evaluate.

make -f Makefile.generate_dataset OUTPUT_DIR=/path/to/data_dir
make -f Makefile.run_classifier BERT_DATA_DIR=/path/to/data_dir \
    OUTPUT_DIR=/path/to/somewhere \
    JAPANESE=true

The result example is below.

Hit@1 : 381, 3: 524, 5 : 578, all : 784
SR@1 : 0.486, 3: 0.668, 5 : 0.737
P@1 : 0.486, 3: 0.349, 5 : 0.286
MAP : 0.550, MRR : 0.596, MDCG : 0.524

TSUBAKI + BERT

TSUBAKI (paper, github ) is an open search engine based on BM25. We can get a higher score by using both TSUBAKI and BERT.

We can evaluate the hybrid model by the following commands.

python scripts/merge_tsubaki_bert_results.py --bert data/localgovfaq/samples/bert.txt \
    --tsubaki data/localgovfaq/samples/tsubaki.txt \
    --threshold 0.3 \
    --tsubaki_ratio 10 > /path/to/resultfile.txt
python scripts/calculate_score.py --testset data/localgovfaq/testset_segmentation.txt \
    --target_qs data/localgovfaq/qas/questions_in_Amagasaki.txt \
    --target_as data/localgovfaq/qas/answers_in_Amagasaki.txt \
    --search_result /path/to/resultfile.txt | tail -n 4

In this command, the results pre-computed by TSUBAKI and BERT are used.

The result example is below.

Hit@1 : 498, 3: 611, 5 : 661, all : 784
SR@1 : 0.635, 3: 0.779, 5 : 0.843
P@1 : 0.635, 3: 0.446, 5 : 0.360
MAP : 0.660, MRR : 0.720, MDCG : 0.625

Reference

Wataru Sakata (LINE Corporation), Tomohide Shibata (Kyoto University), Ribeka Tanaka (Kyoto University) and Sadao Kurohashi (Kyoto University):
FAQ Retrieval using Query-Question Similarity and BERT-Based Query-Answer Relevance,
Proceedings of SIGIR2019: 42nd Intl ACM SIGIR Conference on Research and Development in Information Retrieval, (2019.7).arxiv

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published