Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: fix CI by adding a dependency of python/sdk for the e2e-test #11221

Merged
merged 1 commit into from
Sep 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions sdk/python/test_data/pipelines/xgboost_sample_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# Copyright 2021 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from kfp import compiler
from kfp import components
from kfp import dsl

chicago_taxi_dataset_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/60a2612541ec08c6a85c237d2ec7525b12543a43/components/datasets/Chicago_Taxi_Trips/component.yaml'
)
convert_csv_to_apache_parquet_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/0d7d6f41c92bdc05c2825232afe2b47e5cb6c4b3/components/_converters/ApacheParquet/from_CSV/component.yaml'
)
xgboost_train_on_csv_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/567c04c51ff00a1ee525b3458425b17adbe3df61/components/XGBoost/Train/component.yaml'
)
xgboost_predict_on_csv_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/31939086d66d633732f75300ce69eb60e9fb0269/components/XGBoost/Predict/component.yaml'
)
xgboost_train_on_parquet_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/0ae2f30ff24beeef1c64cc7c434f1f652c065192/components/XGBoost/Train/from_ApacheParquet/component.yaml'
)
xgboost_predict_on_parquet_op = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/31939086d66d633732f75300ce69eb60e9fb0269/components/XGBoost/Predict/from_ApacheParquet/component.yaml'
)


@dsl.pipeline(name='xgboost-sample-pipeline')
def xgboost_pipeline():
training_data_csv = chicago_taxi_dataset_op(
where='trip_start_timestamp >= "2019-01-01" AND trip_start_timestamp < "2019-02-01"',
select='tips,trip_seconds,trip_miles,pickup_community_area,dropoff_community_area,fare,tolls,extras,trip_total',
limit=10000,
).output

# Training and prediction on dataset in CSV format
model_trained_on_csv = xgboost_train_on_csv_op(
training_data=training_data_csv,
label_column=0,
objective='reg:squarederror',
num_iterations=200,
).outputs['model']

xgboost_predict_on_csv_op(
data=training_data_csv,
model=model_trained_on_csv,
label_column=0,
)

# Training and prediction on dataset in Apache Parquet format
training_data_parquet = convert_csv_to_apache_parquet_op(
data=training_data_csv).output

model_trained_on_parquet = xgboost_train_on_parquet_op(
training_data=training_data_parquet,
label_column_name='tips',
objective='reg:squarederror',
num_iterations=200,
).outputs['model']

xgboost_predict_on_parquet_op(
data=training_data_parquet,
model=model_trained_on_parquet,
label_column_name='tips',
)

# Checking cross-format predictions
xgboost_predict_on_parquet_op(
data=training_data_parquet,
model=model_trained_on_csv,
label_column_name='tips',
)

xgboost_predict_on_csv_op(
data=training_data_csv,
model=model_trained_on_parquet,
label_column=0,
)


if __name__ == '__main__':
compiler.Compiler().compile(
pipeline_func=xgboost_pipeline,
package_path=__file__.replace('.py', '.yaml'))
Loading
Loading