Skip to content

Commit

Permalink
Fix some spurious None values in tests (broken at head). (llvm#2840)
Browse files Browse the repository at this point in the history
  • Loading branch information
stellaraccident authored Jan 31, 2024
1 parent 26c0ecd commit 943164d
Showing 1 changed file with 9 additions and 12 deletions.
21 changes: 9 additions & 12 deletions test/Conversion/TorchOnnxToTorch/simple_ops_q_to_z.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -626,7 +626,6 @@ func.func @test_selu(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,

// CHECK-LABEL: func.func @test_reduce_max_keepdims_example
func.func @test_reduce_max_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[2],si64>) -> !torch.vtensor<[3,1,1],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[RANK:.*]] = torch.constant.int 3
// CHECK: %[[INT0_0:.*]] = torch.constant.int 0
Expand Down Expand Up @@ -669,7 +668,6 @@ func.func @test_reduce_max_default_axes_keepdim_example(%arg0: !torch.vtensor<[3

// CHECK-LABEL: func.func @test_reduce_max_do_not_keepdims_example
func.func @test_reduce_max_do_not_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.*]] = torch.constant.none
// CHECK: %[[INT0:.*]] = torch.constant.int 0
// CHECK: %[[RANK:.*]] = torch.constant.int 3
// CHECK: %[[INT0_0:.*]] = torch.constant.int 0
Expand All @@ -693,7 +691,7 @@ func.func @test_reduce_sum_default_axes_keepdims_example(%arg0: !torch.vtensor<[
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[INT1:.+]] = torch.constant.int 1
// CHECK: torch.aten.Bool.int %int1 : !torch.int -> !torch.bool
// CHECK: torch.aten.sum.dim_IntList %arg0, %none, %0, %none : !torch.vtensor<[3,2,2],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
// CHECK: torch.aten.sum.dim_IntList %arg0, %[[NONE]], %0, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32>
return %0 : !torch.vtensor<[1,1,1],f32>
}
Expand All @@ -712,14 +710,13 @@ func.func @test_reduce_sum_do_not_keepdims_example(%arg0: !torch.vtensor<[3,2,2]
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %false, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %false, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 0 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32>
return %0 : !torch.vtensor<[3,2],f32>
}

// CHECK-LABEL: func.func @test_reduce_sum_empty_axes_input_noop_example
func.func @test_reduce_sum_empty_axes_input_noop_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[0],si64>) -> !torch.vtensor<[3,2,2],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[NONE:.+]] = torch.constant.none
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64, torch.onnx.noop_with_empty_axes = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[0],si64>) -> !torch.vtensor<[3,2,2],f32>
return %0 : !torch.vtensor<[3,2,2],f32>
}
Expand All @@ -738,7 +735,7 @@ func.func @test_reduce_sum_empty_set_non_reduced_axis_zero(%arg0: !torch.vtensor
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %none : !torch.vtensor<[2,0,4],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[2,0,1],f32>
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[2,0,4],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[2,0,1],f32>
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[2,0,4],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[2,0,1],f32>
return %0 : !torch.vtensor<[2,0,1],f32>
}
Expand All @@ -757,7 +754,7 @@ func.func @test_reduce_sum_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>,
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
Expand All @@ -776,7 +773,7 @@ func.func @test_reduce_sum_negative_axes_keepdims_example(%arg0: !torch.vtensor<
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
// CHECK: torch.aten.sum.dim_IntList %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceSum"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
Expand All @@ -788,7 +785,7 @@ func.func @test_reduce_mean_default_axes_keepdims_example(%arg0: !torch.vtensor<
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[INT1:.+]] = torch.constant.int 1
// CHECK: torch.aten.Bool.int %int1 : !torch.int -> !torch.bool
// CHECK: torch.aten.mean.dim %arg0, %none, %0, %none : !torch.vtensor<[3,2,2],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
// CHECK: torch.aten.mean.dim %arg0, %[[NONE]], %0, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.none, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32>
return %0 : !torch.vtensor<[1,1,1],f32>
}
Expand All @@ -807,7 +804,7 @@ func.func @test_reduce_mean_do_not_keepdims_example(%arg0: !torch.vtensor<[3,2,2
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: torch.aten.mean.dim %arg0, %6, %false, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
// CHECK: torch.aten.mean.dim %arg0, %6, %false, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 0 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32>
return %0 : !torch.vtensor<[3,2],f32>
}
Expand All @@ -826,7 +823,7 @@ func.func @test_reduce_mean_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>,
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
Expand All @@ -845,7 +842,7 @@ func.func @test_reduce_mean_negative_axes_keepdims_example(%arg0: !torch.vtensor
// CHECK: torch.aten.add.int %1, %4 : !torch.int, !torch.int -> !torch.int
// CHECK: torch.prim.ListConstruct %5 : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %none : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
// CHECK: torch.aten.mean.dim %arg0, %6, %true, %[[NONE]] : !torch.vtensor<[3,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2],f32>
%0 = torch.operator "onnx.ReduceMean"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,1,2],f32>
return %0 : !torch.vtensor<[3,1,2],f32>
}
Expand Down

0 comments on commit 943164d

Please sign in to comment.