Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP]add WMF #35

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions benchmark/relbench_link_prediction_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,25 +35,25 @@

TRAIN_CONFIG_KEYS = ["batch_size", "gamma_rate", "base_lr"]
LINK_PREDICTION_METRIC = "link_prediction_map"
VAL_LOSS_DELTA = 0.001
VAL_LOSS_DELTA = 0.0005

parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="rel-amazon")
parser.add_argument("--task", type=str, default="user-item-rate")
parser.add_argument("--task", type=str, default="user-item-purchase")
parser.add_argument(
"--model",
type=str,
default="hybridgnn",
default="idgnn",
choices=["hybridgnn", "idgnn", "shallowrhsgnn"],
)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--num_trials", type=int, default=50,
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--num_trials", type=int, default=10,
help="Number of Optuna-based hyper-parameter tuning.")
parser.add_argument(
"--num_repeats", type=int, default=5,
help="Number of repeated training and eval on the best config.")
parser.add_argument("--eval_epochs_interval", type=int, default=1)
parser.add_argument("--num_layers", type=int, default=2)
parser.add_argument("--num_layers", type=int, default=6)
parser.add_argument("--num_neighbors", type=int, default=128)
parser.add_argument("--temporal_strategy", type=str, default="last",
choices=["last", "uniform"])
Expand Down Expand Up @@ -107,9 +107,9 @@

if args.model == "idgnn":
model_search_space = {
"encoder_channels": [64, 128, 256],
"encoder_channels": [64, 128],
"encoder_layers": [2, 4, 8],
"channels": [64, 128, 256],
"channels": [64, 128],
"norm": ["layer_norm", "batch_norm"]
}
train_search_space = {
Expand All @@ -120,18 +120,18 @@
model_cls = IDGNN
elif args.model in ["hybridgnn", "shallowrhsgnn"]:
model_search_space = {
"encoder_channels": [32, 64, 128, 256, 512],
"encoder_layers": [2, 4, 8],
"channels": [32, 64, 128, 256, 512],
"embedding_dim": [32, 64, 128, 256, 512],
"encoder_channels": [32, 64],
"encoder_layers": [2, 4],
"channels": [32, 64, 128],
"embedding_dim": [32, 64],
"norm": ["layer_norm", "batch_norm"],
"rhs_emb_mode": [
RHSEmbeddingMode.FUSION, RHSEmbeddingMode.FEATURE,
RHSEmbeddingMode.LOOKUP
]
}
train_search_space = {
"batch_size": [256, 512, 1024],
"batch_size": [32, 64, 128],
"base_lr": [0.001, 0.01],
"gamma_rate": [0.8, 1.],
}
Expand Down
200 changes: 200 additions & 0 deletions examples/wmf_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
"""Example script to run the models in this repository.

python relbench_example.py --dataset rel-trial --task site-sponsor-run
--model hybridgnn --epochs 10
"""

import argparse
import json
import os
import warnings
from pathlib import Path
from typing import Dict, List, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from relbench.base import Dataset, RecommendationTask, TaskType
from relbench.datasets import get_dataset
from relbench.modeling.graph import (
get_link_train_table_input,
make_pkey_fkey_graph,
)
from relbench.modeling.loader import SparseTensor
from relbench.modeling.utils import get_stype_proposal
from relbench.tasks import get_task
from torch import Tensor
from torch_frame import stype
from torch_frame.config.text_embedder import TextEmbedderConfig
from torch_geometric.loader import NeighborLoader
from torch_geometric.seed import seed_everything
from torch_geometric.typing import NodeType
from torch_geometric.utils.cross_entropy import sparse_cross_entropy
from tqdm import tqdm

from hybridgnn.nn.models import WeightedMatrixFactorization
from hybridgnn.utils import GloveTextEmbedding, RHSEmbeddingMode

parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="rel-trial")
parser.add_argument("--task", type=str, default="site-sponsor-run")
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--eval_epochs_interval", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=512)
parser.add_argument("--channels", type=int, default=128)
parser.add_argument("--aggr", type=str, default="sum")
parser.add_argument("--num_layers", type=int, default=4)
parser.add_argument("--num_neighbors", type=int, default=16)
parser.add_argument("--embedding_dim", type=int, default=128)
parser.add_argument("--temporal_strategy", type=str, default="last")
parser.add_argument("--max_steps_per_epoch", type=int, default=2000)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cache_dir", type=str,
default=os.path.expanduser("~/.cache/relbench_examples"))
args = parser.parse_args()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.set_num_threads(1)
seed_everything(args.seed)


dataset: Dataset = get_dataset(args.dataset, download=True)
task: RecommendationTask = get_task(args.dataset, args.task, download=True)
tune_metric = "link_prediction_map"
assert task.task_type == TaskType.LINK_PREDICTION

stypes_cache_path = Path(f"{args.cache_dir}/{args.dataset}/stypes.json")
try:
with open(stypes_cache_path, "r") as f:
col_to_stype_dict = json.load(f)
for table, col_to_stype in col_to_stype_dict.items():
for col, stype_str in col_to_stype.items():
col_to_stype[col] = stype(stype_str)
except FileNotFoundError:
col_to_stype_dict = get_stype_proposal(dataset.get_db())
Path(stypes_cache_path).parent.mkdir(parents=True, exist_ok=True)
with open(stypes_cache_path, "w") as f:
json.dump(col_to_stype_dict, f, indent=2, default=str)

data, col_stats_dict = make_pkey_fkey_graph(
dataset.get_db(),
col_to_stype_dict=col_to_stype_dict,
text_embedder_cfg=TextEmbedderConfig(
text_embedder=GloveTextEmbedding(device=device), batch_size=256),
cache_dir=f"{args.cache_dir}/{args.dataset}/materialized",
)

num_neighbors = [
int(args.num_neighbors // 2**i) for i in range(args.num_layers)
]

loader_dict: Dict[str, NeighborLoader] = {}
dst_nodes_dict: Dict[str, Tuple[NodeType, Tensor]] = {}
src_nodes_dict: Dict[str, Tuple[NodeType, Tensor]] = {}
num_dst_nodes_dict: Dict[str, int] = {}
num_src_nodes_dict: Dict[str, int] = {}
for split in ["train", "val", "test"]:
table = task.get_table(split)
table_input = get_link_train_table_input(table, task)
dst_nodes_dict[split] = table_input.dst_nodes
src_nodes_dict[split] = table_input.src_nodes
num_dst_nodes_dict[split] = table_input.num_dst_nodes
num_src_nodes_dict[split] = len(table_input.src_nodes[1])
loader_dict[split] = NeighborLoader(
data,
num_neighbors=num_neighbors,
time_attr="time",
input_nodes=table_input.src_nodes,
input_time=table_input.src_time,
subgraph_type="bidirectional",
batch_size=args.batch_size,
temporal_strategy=args.temporal_strategy,
shuffle=split == "train",
num_workers=args.num_workers,
persistent_workers=args.num_workers > 0,
)


num_src_nodes = num_src_nodes_dict["train"]
num_dst_nodes = num_dst_nodes_dict["train"]

model = WeightedMatrixFactorization(num_src_nodes, num_dst_nodes, args.embedding_dim).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

def train() -> float:
model.train()

loss_accum = count_accum = 0
steps = 0
total_steps = min(len(loader_dict["train"]), args.max_steps_per_epoch)
sparse_tensor = SparseTensor(dst_nodes_dict["train"][1], device=device)
for batch in tqdm(loader_dict["train"], total=total_steps, desc="Train"):
batch = batch.to(device)

# Get ground-truth
input_id = batch[task.src_entity_table].input_id
src_batch, dst_index = sparse_tensor[input_id]

# Optimization
optimizer.zero_grad()

loss = model(input_id[src_batch], dst_index)
loss /= len(src_batch)

loss.backward()

optimizer.step()

numel = len(src_batch)
loss_accum += float(loss) * numel
count_accum += numel

steps += 1
if steps > args.max_steps_per_epoch:
break
return loss_accum / count_accum if count_accum > 0 else float("nan")

@torch.no_grad()
def test(loader: NeighborLoader, desc: str, sparse_tensor) -> np.ndarray:
model.eval()

pred_list: List[Tensor] = []
for batch in tqdm(loader, desc=desc):
batch = batch.to(device)
input_id = batch[task.src_entity_table].input_id
scores = model.lhs(input_id) @ model.rhs(model.full_rhs).t()

_, pred_mini = torch.topk(scores, k=task.eval_k, dim=1)
pred_list.append(pred_mini)
pred = torch.cat(pred_list, dim=0).cpu().numpy()
return pred


state_dict = None
best_val_metric = 0
val_sparse_tensor = SparseTensor(dst_nodes_dict["val"][1], device=device)
test_sparse_tensor = SparseTensor(dst_nodes_dict["test"][1], device=device)
for epoch in range(1, args.epochs + 1):
train_loss = train()
if epoch % args.eval_epochs_interval == 0:
val_pred = test(loader_dict["val"], desc="Val", sparse_tensor=val_sparse_tensor)
val_metrics = task.evaluate(val_pred, task.get_table("val"))
print(f"Epoch: {epoch:02d}, Train loss: {train_loss}, "
f"Val metrics: {val_metrics}")

if val_metrics[tune_metric] > best_val_metric:
best_val_metric = val_metrics[tune_metric]
state_dict = {k: v.cpu() for k, v in model.state_dict().items()}

assert state_dict is not None
model.load_state_dict(state_dict)
val_pred = test(loader_dict["val"], desc="Best val", sparse_tensor=val_sparse_tensor)
val_metrics = task.evaluate(val_pred, task.get_table("val"))
print(f"Best val metrics: {val_metrics}")

test_pred = test(loader_dict["test"], desc="Test", sparse_tensor=test_sparse_tensor)
test_metrics = task.evaluate(test_pred)
print(f"Best test metrics: {test_metrics}")
8 changes: 7 additions & 1 deletion hybridgnn/nn/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,5 +3,11 @@
from .hybridgnn import HybridGNN
from .shallowrhsgnn import ShallowRHSGNN
from .rhsembeddinggnn import RHSEmbeddingGNN
from .wmf import WeightedMatrixFactorization

__all__ = classes = ['HeteroGraphSAGE', 'IDGNN', 'HybridGNN', 'ShallowRHSGNN', 'RHSEmbeddingGNN']
__all__ = classes = ['HeteroGraphSAGE',
'IDGNN',
'HybridGNN',
'ShallowRHSGNN',
'RHSEmbeddingGNN',
'WeightedMatrixFactorization']
50 changes: 50 additions & 0 deletions hybridgnn/nn/models/wmf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
import torch
from typing import Any, Dict, Optional, Type

import torch
from torch import Tensor
from torch_frame.data.stats import StatType
from torch_frame.nn.models import ResNet
from torch_geometric.data import HeteroData
from torch_geometric.nn import MLP
from torch_geometric.typing import NodeType

class WeightedMatrixFactorization(torch.nn.Module):
def __init__(
self,
num_src_nodes: int,
num_dst_nodes: int,
embedding_dim: int,
w0:float = 0.5,
) -> None:
super().__init__()
self.rhs = torch.nn.Embedding(num_dst_nodes, embedding_dim)
self.lhs = torch.nn.Embedding(num_src_nodes, embedding_dim)
self.w0 = w0
self.num_src_nodes = num_src_nodes
self.num_dst_nodes = num_dst_nodes
self.register_buffer("full_lhs", torch.arange(0, self.num_src_nodes))
self.register_buffer("full_rhs", torch.arange(0, self.num_dst_nodes))

def reset_parameters(self) -> None:
super().reset_parameters()
self.rhs.reset_parameters()
self.lhs.reset_parameters()

def forward(
self,
src_tensor: Tensor,
dst_tensor: Tensor,
) -> Tensor:
lhs_embedding = self.lhs(src_tensor)
rhs_embedding = self.rhs(dst_tensor)
mat_pos = lhs_embedding @ rhs_embedding.t()

#mask = ~torch.isin(self.full_lhs, src_tensor)

# Filter out the values present in the first tensor
#neg_lhs = self.full_lhs[mask]
mask = ~torch.isin(self.full_rhs, dst_tensor)
neg_rhs = self.full_rhs[mask]
mat_neg = torch.mm(lhs_embedding, self.rhs(neg_rhs).t())
return ((1.0 - mat_pos) **2).sum() + self.w0*((mat_neg**2).sum())
Loading