Skip to content

laomeng0703/PointGen

Repository files navigation

PointGen

Work in progress.

The main idea comes from this

We improved the feature extraction module in the original paper, which improved the classification accuracy of the classifier.

Architecture

Modified the model according to my personal thoughts. The feature extraction part uses dgcnn.

The final result tested on the ModelNet40 dataset is about 0.3% higher than the paper, and about 1.5% higher than the original PointNet.

Results

Please look forward to the completion of the paper.

Dependencies

  • Python 3.7
  • CUDA 11
  • PyTorch. At least 1.2.0
  • (Optional) TensorboardX for visualization of the training process.

Usage

Download the ModelNet40 dataset from here.

To train a model to classify point clouds sampled from 3D shapes:

python train_PA.py --data_dir ModelNet40_Folder

Log files and network parameters will be saved to log folder in default.

About

Work in progress.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages