Skip to content

lar-ect/datascience2machinelearning

 
 

Repository files navigation

Data Science & Machine Learning Course

  • Lesson 1

    • Motivation
    • Provocations: hw, data, internet, AI, cloud computing
    • Tendencies
    • Platforms
    • References
  • Lesson 2

    • Conda essentials
    • Platforms (jupyter, jupyterlab, colab)
    • Python Crash Course
  • Lesson 3

    • Modules, Iterations, List Comprehesion
    • String and date operations
    • Introducting to Object-Oriented Programming (OOP)
  • Lesson 4

    • Introduction to Numpy
    • Introduction to Pandas
  • Lesson 5

    • Data Cleaning Basic
  • Lesson 6

    • Exploratory Data Analysis I
    • Matplotlib
    • Line, Bar and Scatter Plots
  • Lesson 7

    • Exploratory Data Analysis II
    • Histogram and Box Plots
    • Wrapper from Pandas to Matplotlib
  • Lesson 8

    • Exploratory Data Analysis III
    • Case study: gender gap
    • Aesthetics
    • Colors, Lines width
    • Annotations
  • Lesson 9

    • Exploratory Data Analysis IV
    • Case study: titanic
    • Visualizing missing values
    • Aggregate data using pivot table
    • Storytelling from Seaborn
  • Lesson 10

    • Exploratory Data Analysis V
    • Visualizing geographical data
    • Working with basemap
    • Customizing the plot
    • Folium
    • Maps with markers
    • Maker clusters -Heatmap
  • Lesson 11

    • Exploratory Data Analysis VI
    • Case Study #1 - Jonh Snow Map
    • Case Study #2 - Open Data Natal-RN
  • Lesson 12

    • Exploratory Data Analysis VII
    • Case study: IBGE
    • Geojson
    • Importing files
    • Creating maps
    • Choropleths maps

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.1%
  • TeX 0.9%