-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
rework for ws19/20 #6
Open
rossmeier
wants to merge
1
commit into
master
Choose a base branch
from
rework
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,6 +19,8 @@ | |
\author{Alwin Ebermann, Emanuel Regnath, Martin Zellner, Alexander Preißner, Hendrik Böttcher, Lukas Kompatscher, Samuel Harder} | ||
\myemail{[email protected]} | ||
|
||
\usepackage{makecell} | ||
|
||
\DeclareMathOperator{\W}{\textit{W}} % Zufallsvariable W | ||
\DeclareMathOperator{\U}{\textit{U}} % Zufallsvariable U | ||
\DeclareMathOperator{\V}{\textit{W}} % Zufallsvariable V | ||
|
@@ -316,7 +318,14 @@ \section{Wahrscheinlichkeitsverteilungen} | |
$\vec{\X} = [\X_1,\shdots,\X_n]^T$ mit $X_i$ Zufallsvariablen | ||
\subsubsection{Gemeinsame kumulative Verteilungsfunktion:} | ||
$F_{\X_1,\shdots,\X_n}(x_1,\shdots,x_n) = \boxed{F_{\vec{\X}}(\vec{x}) = \P(\{\vec{\X} \leq \vec{x}\})} = \newline | ||
\P(\{\X_1 \leq x_1,\shdots,\X_n \leq x_n\})$ | ||
\P(\{\X_1 \leq x_1,\shdots,\X_n \leq x_n\})$\\ | ||
\textbf{Eigenschaften:} | ||
\begin{itemize} | ||
\item in jeder Koordinate Monoton wachsend | ||
\item rechtsseitig Stetig: $\forall h>0:\lim\limits_{h\rightarrow 0}F_{\X_1,...,\X_n}(x_1+h,...,x_n+h) = F_{\X_1,...,\X_n}(x_1,...,x_n),~\forall (x_1,...,x_n)\in\mathbb{R}^n$ | ||
\item $\lim\limits_{x_i\rightarrow -\infty}(x_1,...,x_n) = 0~\forall i=1,...,n,$\\ | ||
$\lim\limits_{x_1\rightarrow\infty}\cdots\lim\limits_{x_n\rightarrow\infty}F_{\X_1,...,\X_n}(x_1,...,x_n)=1$ | ||
\end{itemize} | ||
\subsubsection{Diskrete Zufallsvariablen:} | ||
$p_{\X_1,\shdots,\X_n}(x_1,\shdots,x_n) = \P(\{\vec{\X} = \vec{x}\})$ (joint probability mass function) | ||
\subsubsection{Stetige Zufallsvariablen:} | ||
|
@@ -392,7 +401,7 @@ \section{Stochastische Standardmodelle} | |
\subsection{Begriffe} | ||
\textbf{Gedächtnislos}\\ | ||
Eine Zufallsvariable X ist gedächtnislos, falls: \\ | ||
$\P(\{\X > a + b)\} | \{\X > a\}) = \P(\{\X > b\})$, \qquad $a,b > 0$ | ||
$\P(\{\X > a + b\} | \{\X > a\}) = \P(\{\X > b\})$, \qquad $a,b > 0$ | ||
|
||
\end{sectionbox} | ||
\begin{sectionbox} | ||
|
@@ -474,7 +483,8 @@ \section{Stochastische Standardmodelle} | |
\begin{sectionbox} | ||
\subsection{Poisson-Verteilung ($\lambda \ge 0$)} | ||
Asymptotischer Grenzfall der Binomialverteilung\\ | ||
$n \ra \infty, p \ra 0, np \ra \lambda$ \quad $p_{\X}(k) = \lim\limits_{n \ra \infty}{B_{n,\frac{\lambda}{n}}(k)}$\\[0.5em] | ||
$n \ra \infty, p \ra 0, np \ra \lambda$ \quad $p_{\X}(k) = \lim\limits_{n \ra \infty}{B_{n,\frac{\lambda}{n}}(k)}$\\ | ||
$\lambda$: mittlere Wahscheinlichkeit des Eintreten des Ereignisses von p\\[0.5em] | ||
\parbox{3.3cm}{\emph{WMF/PMF:} \\ $p_{\X}[k] = \frac{\lambda^k}{k!} e^{-\lambda}$ \qquad $k \in \N_0$\\ \includegraphics[width = 3.3cm]{img/poisson_pmf.pdf}} | ||
\parbox{3.3cm}{\emph{KVF/CDF:} \\ $F_{\X}[k] =$ zu kompliziert \\ \includegraphics[width = 3.3cm]{img/poisson_cdf.pdf}}\\ | ||
|
||
|
@@ -564,10 +574,15 @@ \section{Erwartungswert} | |
\begin{emphbox} | ||
$\E [\X] = \underset{\text{diskrete} \X:\Omega \ra \Omega'}{\sum\limits_{x \in \Omega'} x \cdot \P_{\X}(x)} \quad \stackrel{\wedge}{=}\quad \underset{\text{stetige} \X: \Omega \ra \R}{\int \limits_{\R} x \cdot f_{\X} (x) \diff x}$ | ||
\end{emphbox} | ||
Eigenschaften: | ||
\textbf{Voraussetzung:}\\ | ||
$\sum |x| P(\{\X=x\})<\infty$\\ | ||
\textbf{Eigenschaften:} | ||
\begin{tablebox}{ll} | ||
EW von Konstante: & | ||
$E[\alpha] = \alpha$\\ | ||
Linearität: & | ||
$E[\alpha \X + \beta \Y] = \alpha E [\X] + \beta E[\Y]$ \\ | ||
&$\Rightarrow E[\X-E[\X]] = 0$\\ | ||
Monotonie: & | ||
$\X \le \Y \Ra E[\X] \le E[\Y]$ \\ | ||
\end{tablebox} | ||
|
@@ -652,6 +667,7 @@ \subsection{Kovarianz} | |
$\Cov [\X,\Y] = \E[(\X- \E[\X])(\Y - \E[\Y])] = \Cov [\Y, \X]$\\[0.5em] | ||
$\Cov [\X,\Y] = \E [\X\Y] - \E[\X] \E[\Y] = \Cov[\Y, \X]$ | ||
\end{emphbox} | ||
\textbf{Voraussetzung:} $\exists E[\X],E[Y],E[XY]$ oder $\exists E[\X^2],E[\Y^2]$\\ | ||
$\Cov [\alpha \X + \beta, \gamma \Y + \delta] = \alpha \gamma \Cov [\X, \Y]$ \\ | ||
$\Cov [ \X + \textit U, \Y + \textit V] = \Cov [\X, \Y] + \Cov [\X, \textit V] + \Cov [\textit U, \Y] + \Cov [\textit U, \textit V]$ \\ | ||
\end{sectionbox} | ||
|
@@ -676,7 +692,7 @@ \subsection{Kovarianz} | |
\begin{emphbox} | ||
$\E[\X\Y] = 0$ | ||
\end{emphbox} | ||
mit dem Korrelationswert $\E[\X\Y]$ | ||
mit dem Korrelationswert $ r_{\X,\Y} = \E[\X\Y]$ | ||
|
||
\end{sectionbox} | ||
|
||
|
@@ -689,6 +705,21 @@ \subsection{Kovarianz} | |
\text{positiv korreliert} & \rho_{\mathsf{\X,\Y}}\in (0,1]\end{cases}$ | ||
\end{sectionbox} | ||
|
||
\begin{sectionbox} | ||
\subsection{Lineare Regression} | ||
affine Abbildung $\hat{\Y} = \alpha \X + \beta$ mit Fehler $\varepsilon = \hat{\Y} - \Y$\\ | ||
\textbf{Optimierungsproblem:} | ||
\begin{emphbox} | ||
$\min\limits_{\alpha,\beta} E[\varepsilon^2] = \min\limits_{\alpha,\beta} E\left[\left(\hat{\Y}-\Y\right)^2\right]$ | ||
\end{emphbox} | ||
\textbf{Lösung:}\\ | ||
$\alpha = \dfrac{E[\X\Y]-E[\X]E[\Y]}{E[\X^2]-E[\X]^2} = \dfrac{c_{\X,\Y}}{\sigma^2_{\X}} = \dfrac{c_{\X,\Y}}{\sigma^2_{\X}}\dfrac{\sigma_{\Y}}{\sigma_{\Y}} = \rho_{\X,\Y}\dfrac{\sigma_{\Y}}{\sigma_{\X}}$\\ | ||
$\beta = E[\Y] - \alpha E[\X] = E[\Y] - \rho_{\X,\Y}\dfrac{\sigma_{\Y}}{\sigma_{\X}}E[\X]$\\ | ||
$\Rightarrow \hat{\Y} = \rho_{\X,\Y}\dfrac{\sigma_{\Y}}{\sigma_{\X}}(\X-E[\X])+E[\Y]$ | ||
\textbf{Kleinster mittlerer quadratischer Fehler:}\\ | ||
$\E[\varepsilon^2]=\sigma_{\Y}^2-c_{\Y,\X}\sigma^{-2}_{\X}c_{\X,\Y}=\sigma_{\Y}^2-c_{\X,\Y}^2\sigma_{\X}^{-2}=\sigma_{\Y}^2(1-\rho_{\X,\Y}^2)$ | ||
\end{sectionbox} | ||
|
||
%TODO: Lineare Regression hier einfügen | ||
|
||
|
||
|
@@ -727,26 +758,26 @@ \section{Erzeugende und charakter. Funktionen} | |
\end{sectionbox} | ||
|
||
% Im WS2015/16 nicht Klausurrelevant | ||
%\begin{sectionbox} | ||
% \subsection{Momenterzeugende Funktion} % (fold) | ||
% \label{sub:momenterzeugende_funktion} | ||
% | ||
% Mit $\X: \Omega \ra \mathbb R$ eine reelle ZV: \\ | ||
% | ||
% \boxed{ | ||
% M_{\X} (s) = \E [e^{s \X}], \quad s \in \mathbb D = \eset{s \in \mathbb R }{\E [e^{s \X} < \infty]} | ||
% }\\ | ||
% | ||
% | ||
% Potenzreihenentwicklung (mit $s \in ]-a, a[$):\\ | ||
% $M_{\X} (s) = \E [ e^{s \X}] = \E \left[\sum \limits_{k=0}^{\infty} \frac{s^k}{k!} \X^k\right] = \sum \limits_{k=0}^{\infty} \frac{s^k}{k!} \E\left[\X^k\right]$ | ||
% | ||
% Erwartungswert: | ||
% $\E[\X^n] = \left[\frac{\diff^n}{\diff s^n} M_{\X} (s)\right]_{s=0}, \quad \forall n \in \mathbb N_0$ | ||
% | ||
% Summe von ZV: | ||
% $M_{\Z} (s) = \prod \limits_{i = 1}^{n} M_{\X_i} (s)$ | ||
%\end{sectionbox} | ||
\begin{sectionbox} | ||
\subsection{Momenterzeugende Funktion} % (fold) | ||
\label{sub:momenterzeugende_funktion} | ||
|
||
Mit $\X: \Omega \ra \mathbb R$ eine reelle ZV: \\ | ||
|
||
\boxed{ | ||
M_{\X} (s) = \E [e^{s \X}], \quad s \in \mathbb D = \eset{s \in \mathbb R }{\E [e^{s \X} < \infty]} | ||
}\\ | ||
|
||
|
||
Potenzreihenentwicklung (mit $s \in ]-a, a[$):\\ | ||
$M_{\X} (s) = \E [ e^{s \X}] = \E \left[\sum \limits_{k=0}^{\infty} \frac{s^k}{k!} \X^k\right] = \sum \limits_{k=0}^{\infty} \frac{s^k}{k!} \E\left[\X^k\right]$ | ||
|
||
Erwartungswert: | ||
$\E[\X^n] = \left[\frac{\diff^n}{\diff s^n} M_{\X} (s)\right]_{s=0}, \quad \forall n \in \mathbb N_0$ | ||
|
||
Summe von ZV: | ||
$M_{\Z} (s) = \prod \limits_{i = 1}^{n} M_{\X_i} (s)$ | ||
\end{sectionbox} | ||
|
||
% subsection momenterzeugende_funktion (end) | ||
\begin{sectionbox} | ||
|
@@ -786,7 +817,21 @@ \section{Erzeugende und charakter. Funktionen} | |
\section{Reelle Zufallsfolgen} | ||
% ============================================================================================ | ||
\begin{sectionbox} | ||
Eine reelle Zufallsfolge ist ganz einfach eine Folge reeller Zufallsvariablen. \\ \\ | ||
Eine reelle Zufallsfolge ist ganz einfach eine Folge reeller Zufallsvariablen. \\ | ||
$\X_n: \Omega \Rightarrow \mathbb{R},\quad n\in \mathbb{N}$\\ | ||
\begin{tablebox}{lll} | ||
&$\omega$ variabel | ||
&$\omega$ gegeben | ||
\\\cmrule | ||
$n$ variabel | ||
&\makecell[l]{$\X=(\X_n : n\in\mathbb{N})$\\(Zufallsfolge)} | ||
&\makecell[l]{$x=\X(\omega) = (\X_n(\omega): n\in\mathbb{N})$\\(Musterfolge)} | ||
\\ | ||
$n$ gegeben | ||
&\makecell[l]{$\X_n$\\(Zufallsvariable\\zum Folgenindex $n$)} | ||
&\makecell[l]{$x_n=\X(\omega)$\\(Realisierung\\zum Folgenindex $n$)} | ||
\end{tablebox} | ||
\ \\ | ||
\textbf{Ensemble} \\ | ||
$\textsf{S}_n : \Omega_n \times \Omega_{n-1} \times \dots \times \Omega_1 \ra \R$\\ | ||
$(\omega_n,\omega_{n-1},\dots,\omega_1) \mapsto s_n(\omega_n,\omega_{n-1},\dots,\omega_1), \quad n \in \N$\\ | ||
|
@@ -823,7 +868,8 @@ \section{Reelle Zufallsfolgen} | |
|
||
\begin{sectionbox} | ||
\subsection{Stationarität} | ||
Eine Zufallsfolge ist \emph{stationär}, wenn um ein beliebiges $k$ $(k \in \N)$ zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen.\\ | ||
Eine Zufallsfolge ist \emph{stationär}, wenn um ein beliebiges $k$ $(k \in \N)$ zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen:\\ | ||
$F_{\X_{i_1},...,\X_{i_n}}(x_1,...,x_n) = F_{\X_{i_1+k},...,\X_{i_n+k}}(x_1,...,x_n)$\\ | ||
Im \emph{weiteren Sinne stationär (W.S.S.)}, wenn: | ||
\begin{tablebox}{@{\extracolsep\fill}lll@{}} | ||
$\mu_{\X}(i) = \mu_{\X}(i + k)$ \\ | ||
|
@@ -833,6 +879,27 @@ \section{Reelle Zufallsfolgen} | |
stationär $\Ra$ WSS (aber nicht anders herum!) | ||
\end{sectionbox} | ||
|
||
\begin{sectionbox} | ||
\subsection{Konvergenz} | ||
\textbf{Fast sicher (almost surely):}\\ | ||
$\X_n \xrightarrow{\text{a.s.}} \X \Leftrightarrow P\left(\left\{\omega: \lim\limits_{n\rightarrow\infty}\X_n(\omega)=\X(\omega)\right\}\right)=1$\\ | ||
\textbf{in Wahrscheinlichkeit (in probability):}\\ | ||
$\X_n\xrightarrow{\text{p.}}\X\Leftrightarrow \lim\limits_{n\rightarrow\infty}P(\{\omega : |\X_n(\omega) - X(\omega)|>\varepsilon\})=0$\\ | ||
\textbf{im quadratischen Mittel (in the mean square sense):}\\ | ||
$\X_n\xrightarrow{\text{m.s.}}\X\Leftrightarrow \lim\limits_{n\rightarrow\infty}E\left[(\X_n(\omega)-\X(\omega))^2\right]=0$\\ | ||
\textbf{in Verteilung (in distribution):}\\ | ||
$\X\xrightarrow{\text{d.}}\X\Leftrightarrow\lim\limits_{n\rightarrow\infty}F_{\X_n}(x)=F_{\X}(x)$\\ | ||
\textbf{Zusammenhänge} | ||
\begin{itemize} | ||
\item $\X_n\xrightarrow{\text{a.s.}}\X \Rightarrow \X_n\xrightarrow{\text{p.}}\X$ | ||
\item $\X_n\xrightarrow{\text{m.s.}}\X \Rightarrow \X_n\xrightarrow{\text{p.}}\X$ | ||
\item $P(\{|\X_n|\leq\Y\}) = 1 \forall n \wedge E[Y^2]<\infty\wedge \X_n\xrightarrow{\text{p.}}\X \Rightarrow \X_n\xrightarrow{\text{m.s.}}\X$ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add line break before right arrow |
||
\item $\X_n\xrightarrow{\text{p.}}\X \Rightarrow \X_n\xrightarrow{\text{d.}}\X$ | ||
\item $\X_n\xrightarrow{\text{a.s./p./m.s.}}\X \wedge \X_n\xrightarrow{\text{a.s./p./m.s.}}\Y\Rightarrow P(\{\X=\Y\})=1$ | ||
\item $\X_n\xrightarrow{\text{d.}}\X \wedge \X_n\xrightarrow{\text{d.}}\Y\Rightarrow \X \text{und}\Y\text{haben die gleiche Verteilung}$ | ||
\end{itemize} | ||
\end{sectionbox} | ||
|
||
\begin{sectionbox} | ||
\subsection{Markow-Ungleichung} | ||
\boxed{\P(\eset{\abs{\X} \ge a}) \le \frac{\E[|\X|]}{a} } | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add line break after this line