Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add neural network example using xtensor #95

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
271 changes: 271 additions & 0 deletions integration_tests/nn_01.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,271 @@
#include "nn_01.h"

void init_Neuron_t(Neuron_t& neuron, int n_weights) {
initWeights(neuron, n_weights);
neuron.m_nWeights = n_weights;
neuron.m_activation = 0;
neuron.m_output = 0;
neuron.m_delta = 0;
}

void initWeights(Neuron_t& neuron, int n_weights) {
for (int w = 0; w < n_weights; w++) {
neuron.m_weights[w] = 0.0;
}
}

void activate(Neuron_t& neuron, xt::xtensor<float, 1>& inputs) {
neuron.m_activation = neuron.m_weights[neuron.m_nWeights-1];
for (size_t i = 0; i < neuron.m_nWeights-1; i++)
{
neuron.m_activation += neuron.m_weights[i] * inputs[i];
}
}

void transfer(Neuron_t& neuron) {
neuron.m_output = 1.0f / (1.0f + exp(-neuron.m_activation));
}

void init_Layer_t(Layer_t& layer, int n_neurons, int n_weights) {
initNeurons(layer, n_neurons, n_weights);
}

void initNeurons(Layer_t& layer, int n_neurons, int n_weights) {
for (int n = 0; n < n_neurons; n++) {
Neuron_t neuron;
init_Neuron_t(neuron, n_weights);
layer.m_neurons[n] = neuron;
}
}

void init_Network_t(Network_t& network) {
network.m_nLayers = 0;
}

void initialize_network(Network_t& network, int n_inputs, int n_hidden, int n_outputs) {
add_layer(network, n_hidden, n_inputs + 1);
add_layer(network, n_outputs, n_hidden + 1);
}

void add_layer(Network_t& network, int n_neurons, int n_weights) {
network.current_layer++;
Layer_t layer;
init_Layer_t(layer, n_neurons, n_weights);
network.m_layers[network.current_layer] = layer;
}

xt::xtensor<float, 1> forward_propagate(Network_t& network, xt::xtensor<float, 1>& inputs) {
for (size_t i = 0; i < network.m_nLayers; i++) {
xt::xtensor<Neuron_t, 1> layer_neurons = get_neurons(network.m_layers[i]);
xt::xtensor<float, 1> new_inputs = xt::empty<float>({layer_neurons.size()});
for (size_t n = 0; n < layer_neurons.size(); n++) {
activate(layer_neurons[n], inputs);
transfer(layer_neurons[n]);
new_inputs[n] = get_output(layer_neurons[n]);
}
inputs = new_inputs;
}
return inputs;
}

void backward_propagate_error(Network_t& network, xt::xtensor<float, 1>& expected) {
for (size_t i = network.m_nLayers; i > 0;) {
i--;
xt::xtensor<Neuron_t, 1> layer_neurons = get_neurons(network.m_layers[i]);
for (size_t n = 0; n < layer_neurons.size(); n++) {
float error = 0.0;
if (i == network.m_nLayers - 1)
{
error = expected[n] - get_output(layer_neurons[n]);
}
else {
xt::xtensor<Neuron_t, 1> neus = get_neurons(network.m_layers[i + 1]);
for (size_t j = 0; j < neus.size(); j++) {
error += (get_weights(neus[j])[n] * get_delta(neus[j]));
}
}
set_delta(layer_neurons[n], error * transfer_derivative(layer_neurons[n]));
}
}
}

void update_weights(Network_t& network, const xt::xtensor<float, 1>& inputs, float l_rate) {
for (size_t i = 0; i < network.m_nLayers; i++) {
xt::xtensor<float, 1> new_inputs;
if (i != 0) {
Layer_t layer = network.m_layers[i-1];
xt::xtensor<Neuron_t, 1> neurons = get_neurons(layer);
new_inputs = xt::empty<float>({neurons.size()});
for (size_t j = 0; j < neurons.size(); j++) {
new_inputs[j] = get_output(neurons[j]);
}
} else {
new_inputs = xt::view(inputs, xt::range(0, inputs.size() - 1));
}

xt::xtensor<Neuron_t, 1> layer_neurons = get_neurons(network.m_layers[i]);

for (size_t n = 0; n < layer_neurons.size(); n++) {
xt::xtensor<float, 1> weights = get_weights(layer_neurons[n]);
for (size_t j = 0; j < new_inputs.size(); j++) {
weights[j] += l_rate * get_delta(layer_neurons[n]) * new_inputs[j];
}
weights[weights.size() - 1] += l_rate * get_delta(layer_neurons[n]);
}
}
}

void train(Network_t& network, xt::xtensor<float, 2>& trainings_data, float l_rate, size_t n_epoch, size_t n_outputs) {
for (size_t e = 0; e < n_epoch; e++) {
float sum_error = 0;
for (size_t i = 0; i < trainings_data.shape(0); i++) {
xt::xtensor<float, 1> row = xt::view(trainings_data, i);
xt::xtensor<float, 1> outputs = forward_propagate(network, row);
xt::xtensor<float, 1> expected = xt::empty<float>({n_outputs});
expected(trainings_data(i, trainings_data.shape(1) - 1)) = 1.0;
for (size_t x = 0; x < n_outputs; x++) {
sum_error += static_cast<float>(pow((expected[x] - outputs[x]), 2));
}
backward_propagate_error(network, expected);
update_weights(network, xt::view(trainings_data, i), l_rate);
}
std::cout << "[>] epoch=" << e << ", l_rate=" << l_rate << ", error=" << sum_error << std::endl;
}
}

int predict(Network_t& network, xt::xtensor<float, 1>& input) {
xt::xtensor<float, 1> outputs = forward_propagate(network, input);
return xt::amax(outputs)() - outputs[0];
}

void display_human(Network_t& network) {
std::cout << "[Network] (Layers: " << network.m_nLayers << ")" << std::endl;


std::cout << "{" << std::endl;
for (size_t l = 0; l < network.m_layers.size(); l++) {
Layer_t layer = network.m_layers[l];
std::cout << "\t (Layer " << l << "): {";
for (size_t i = 0; i < get_neurons(layer).size(); i++) {
Neuron_t neuron = get_neurons(layer)[i];
std::cout << "<(Neuron " << i << "): [ weights={";
xt::xtensor<float, 1> weights = get_weights(neuron);
for (size_t w = 0; w < weights.size(); ++w) {
std::cout << weights[w];
if (w < weights.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}, output=" << get_output(neuron) << ", activation=" << get_activation(neuron) << ", delta=" << get_delta(neuron);
std::cout << "]>";
if (i < get_neurons(layer).size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
if (l < network.m_layers.size() - 1) {
std::cout << ", ";
}
std::cout << std::endl;
}
std::cout << "}" << std::endl;
}

xt::xtensor<float, 2> generate_data();
xt::xtensor<float, 1> evaluate_network(const xt::xtensor<float, 2>& dataset, int n_folds, float l_rate, int n_epoch, int n_hidden);
float accuracy_metric(const xt::xtensor<int, 1>& expect, const xt::xtensor<int, 1>& predict);

int main() {
std::cout << "Neural Network with Backpropagation in C++ from scratch" << std::endl;

xt::xtensor<float, 2> csv_data;
int n_folds = 5;
float l_rate = 0.3f;
int n_epoch = 500;
int n_hidden = 5;

csv_data = generate_data();
xt::xtensor<float, 1> scores = evaluate_network(csv_data, n_folds, l_rate, n_epoch, n_hidden);
float mean = xt::sum(scores)() / static_cast<float>(scores.size());
std::cout << "Mean accuracy: " << mean << std::endl;

return 0;
}

xt::xtensor<float, 1> evaluate_network(const xt::xtensor<float, 2>& dataset, int n_folds, float l_rate, int n_epoch, int n_hidden) {
xt::xtensor<float, 3> dataset_splits;
std::vector<float> scores;


size_t fold_size = static_cast<unsigned int>(dataset.size() / n_folds);
for (int f = 0; f < n_folds; f++) {
xt::xtensor<float, 2> fold;
while (fold.size() < fold_size) {
int n = rand() % dataset.size();
std::swap(dataset[n], dataset.back());
fold.push_back(dataset.back());
dataset.pop_back();
}
dataset_splits.push_back(fold);
}


/* Iterate over folds */
// choose one as test and the rest as training sets
for (size_t i = 0; i < dataset_splits.size(); i++)
{
std::vector<std::vector<std::vector<float>>> train_sets = dataset_splits;
std::swap(train_sets[i], train_sets.back());
std::vector<std::vector<float>> test_set = train_sets.back();
train_sets.pop_back();


// merge the multiple train_sets into one train set
std::vector<std::vector<float>> train_set;
for (auto &s: train_sets)
{
for (auto& row : s) {
train_set.push_back(row);
}
}


// store the expected results
std::vector<int> expected;
for (auto& row: test_set)
{
expected.push_back(static_cast<int>(row.back()));
// just ensure that the actual result is not saved in the test data
row.back() = 42;
}


std::vector<int> predicted;


std::set<float> results;
for (const auto& r : train_set) {
results.insert(r.back());
}
int n_outputs = results.size();
int n_inputs = train_set[0].size() - 1;


/* Backpropagation with stochastic gradient descent */
Network* network = new Network();
network->initialize_network(n_inputs, n_hidden, n_outputs);
network->train(train_set, l_rate, n_epoch, n_outputs);


for (const auto& row: test_set)
{
predicted.push_back(network->predict(row));
}


scores.push_back(accuracy_metric(expected, predicted));
}


return scores;
}
87 changes: 87 additions & 0 deletions integration_tests/nn_01.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
#ifndef INTEGRATION_TESTS_NN_01_H
#define INTEGRATION_TESTS_NN_01_H

#include <xtensor/xtensor.hpp>
#include <xtensor/xfixed.hpp>
#include "xtensor/xio.hpp"
#include "xtensor/xview.hpp"
#include <cmath>

// Neuron.begin
struct Neuron_t {
size_t m_nWeights;
xt::xtensor<float, 1> m_weights;
float m_activation;
float m_output;
float m_delta;
};

void init_Neuron_t(Neuron_t& neuron, int n_weights);

void activate(Neuron_t& neuron, const xt::xtensor<float, 1>& inputs);

void transfer(Neuron_t& neuron);

float transfer_derivative(Neuron_t& neuron) {
return static_cast<float>(neuron.m_output * (1.0 - neuron.m_output));
};

// return mutable reference to the neuron weights
xt::xtensor<float, 1>& get_weights(Neuron_t& neuron) {
return neuron.m_weights;
};

float get_output(Neuron_t& neuron) {
return neuron.m_output;
};

float get_activation(Neuron_t& neuron) {
return neuron.m_activation;
};

float get_delta(Neuron_t& neuron) {
return neuron.m_delta;
};

void set_delta(Neuron_t& neuron, float delta) {
neuron.m_delta = delta;
};

void initWeights(Neuron_t& neuron, int n_weights);
// Neuron.end

// Layer.begin
struct Layer_t {
xt::xtensor<Neuron_t, 1> m_neurons;
};

void init_Layer_t(Layer_t& layer, int n_neurons, int n_weights);

xt::xtensor<Neuron_t, 1> get_neurons(Layer_t& layer) {
return layer.m_neurons;
};

void initNeurons(Layer_t& layer, int n_neurons, int n_weights);
// Layer.end

// Network.begin
struct Network_t {
size_t m_nLayers, current_layer;
xt::xtensor<Layer_t, 1> m_layers;
};

void init_Network_t(Network_t& network);

void initialize_network(Network_t& network, int n_inputs, int n_hidden, int n_outputs);

void add_layer(Network_t& network, int n_neurons, int n_weights);
xt::xtensor<float, 1> forward_propagate(Network_t& network, xt::xtensor<float, 1>& inputs);
void backward_propagate_error(Network_t& network, xt::xtensor<float, 1>& expected);
void update_weights(Network_t& network, const xt::xtensor<float, 1>& inputs, float l_rate);
void train(Network_t& network, xt::xtensor<float, 2>& trainings_data, float l_rate, size_t n_epoch, size_t n_outputs);
int predict(Network_t& network, xt::xtensor<float, 1>& input);

void display_human(Network_t& network);
// Network.end

#endif
Loading