-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b788284
commit 0eb349e
Showing
1 changed file
with
189 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
# | ||
# Copyright (c) 2022-2024, ETH Zurich, Matias Mattamala, Jonas Frey. | ||
# All rights reserved. Licensed under the MIT license. | ||
# See LICENSE file in the project root for details. | ||
# | ||
from wild_visual_navigation import WVN_ROOT_DIR | ||
from wild_visual_navigation.feature_extractor import FeatureExtractor | ||
from wild_visual_navigation.cfg import ExperimentParams | ||
from wild_visual_navigation.image_projector import ImageProjector | ||
from wild_visual_navigation.model import get_model | ||
from wild_visual_navigation.utils import ConfidenceGenerator | ||
from wild_visual_navigation.utils import AnomalyLoss | ||
from PIL import Image | ||
import torch | ||
import numpy as np | ||
import torch.nn.functional as F | ||
from omegaconf import OmegaConf | ||
from wild_visual_navigation.utils import Data | ||
from os.path import join | ||
import os | ||
from argparse import ArgumentParser | ||
from wild_visual_navigation.model import get_model | ||
from pathlib import Path | ||
from wild_visual_navigation.visu import LearningVisualizer | ||
|
||
|
||
# Function to handle folder creation | ||
def parse_folders(args): | ||
input_image_folder = args.input_image_folder | ||
output_folder = args.output_folder_name | ||
|
||
# Check if input folder is global or local | ||
if not os.path.isabs(input_image_folder): | ||
input_image_folder = os.path.join(WVN_ROOT_DIR, "assets", input_image_folder) | ||
|
||
# Check if output folder is global or local | ||
if not os.path.isabs(output_folder): | ||
output_folder = os.path.join(WVN_ROOT_DIR, "results", output_folder) | ||
|
||
# Create input folder if it doesn't exist | ||
if not os.path.exists(input_image_folder): | ||
raise ValueError(f"Input folder '{input_image_folder}' does not exist.") | ||
|
||
# Create output folder if it doesn't exist | ||
if not os.path.exists(output_folder): | ||
os.makedirs(output_folder) | ||
return input_image_folder, output_folder | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
|
||
# Define command line arguments | ||
parser.add_argument("--prediction_per_pixel", default=True, help="Description of prediction per pixel argument") | ||
parser.add_argument("--model_name", default="indoor_mpi", help="Description of model name argument") | ||
parser.add_argument( | ||
"--input_image_folder", | ||
default="demo_data", | ||
help="If not gloabl will search for the folde name within the assests folder", | ||
) | ||
parser.add_argument( | ||
"--output_folder_name", | ||
default="demo_data", | ||
help="If not global will create the folder within the results folder", | ||
) | ||
|
||
# Fixed values | ||
parser.add_argument("--network_input_image_height", type=int, default=224) | ||
parser.add_argument("--network_input_image_width", type=int, default=224) | ||
parser.add_argument( | ||
"--segmentation_type", | ||
default="stego", | ||
choices=["slic", "grid", "random", "stego"], | ||
help="Options: slic, grid, random, stego", | ||
) | ||
parser.add_argument( | ||
"--feature_type", default="stego", choices=["dino", "dinov2", "stego"], help="Options: dino, dinov2, stego" | ||
) | ||
parser.add_argument("--dino_patch_size", type=int, default=8, choices=[8, 16], help="Options: 8, 16") | ||
parser.add_argument("--dino_backbone", default="vit_small", choices=["vit_small"], help="Options: vit_small") | ||
parser.add_argument( | ||
"--slic_num_components", type=int, default=100, help="Number of components for SLIC segmentation" | ||
) | ||
|
||
# Parse the command line arguments | ||
args = parser.parse_args() | ||
|
||
input_image_folder, output_folder = parse_folders(args) | ||
|
||
params = OmegaConf.structured(ExperimentParams) | ||
anomaly_detection = False | ||
|
||
# Update model from file if possible | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
visualizer = LearningVisualizer() | ||
|
||
if anomaly_detection: | ||
confidence_generator = ConfidenceGenerator( | ||
method=params.loss_anomaly.method, std_factor=params.loss_anomaly.confidence_std_factor | ||
) | ||
else: | ||
confidence_generator = ConfidenceGenerator( | ||
method=params.loss.method, std_factor=params.loss.confidence_std_factor | ||
) | ||
|
||
# Load feature and segment extractor | ||
feature_extractor = FeatureExtractor( | ||
device=device, | ||
segmentation_type=args.segmentation_type, | ||
feature_type=args.feature_type, | ||
patch_size=args.dino_patch_size, | ||
backbone_type=args.dino_backbone, | ||
input_size=args.network_input_image_height, | ||
slic_num_components=args.slic_num_components, | ||
) | ||
|
||
# Sorry for that 💩 | ||
params.model.simple_mlp_cfg.input_size = feature_extractor.feature_dim | ||
params.model.double_mlp_cfg.input_size = feature_extractor.feature_dim | ||
params.model.simple_gcn_cfg.input_size = feature_extractor.feature_dim | ||
params.model.linear_rnvp_cfg.input_size = feature_extractor.feature_dim | ||
|
||
# Load traversability model | ||
model = get_model(params.model).to(device) | ||
model.eval() | ||
p = join(WVN_ROOT_DIR, "assets", "checkpoints", f"{args.model_name}.pt") | ||
model_state_dict = torch.load(p) | ||
model.load_state_dict(model_state_dict, strict=False) | ||
print(f"Model {args.model_name} successfully loaded!") | ||
|
||
cg = model_state_dict["confidence_generator"] | ||
confidence_generator.var = cg["var"] | ||
confidence_generator.mean = cg["mean"] | ||
confidence_generator.std = cg["std"] | ||
|
||
images = [str(s) for s in Path(input_image_folder).rglob("*.png" or "*.jpg")] | ||
print(f"Found {len(images)} images in the folder!") | ||
|
||
for i, img_p in enumerate(images): | ||
torch_image = torch.from_numpy(np.array(Image.open(img_p))).to(device).permute(2, 0, 1).float() / 255.0 | ||
C, H, W = torch_image.shape | ||
# K can be ignored given that no reprojection is performed | ||
image_projector = ImageProjector( | ||
K=torch.eye(4, device=device)[None], | ||
h=H, | ||
w=W, | ||
new_h=args.network_input_image_height, | ||
new_w=args.network_input_image_width, | ||
) | ||
torch_image = image_projector.resize_image(torch_image) | ||
print(torch_image.shape, "post") | ||
# Extract features | ||
_, feat, seg, center, dense_feat = feature_extractor.extract( | ||
img=torch_image[None], | ||
return_centers=False, | ||
return_dense_features=True, | ||
n_random_pixels=100, | ||
) | ||
|
||
# Forward pass to predict traversability | ||
if args.prediction_per_pixel: | ||
# Pixel-wise traversability prediction using the dense features | ||
data = Data(x=dense_feat[0].permute(1, 2, 0).reshape(-1, dense_feat.shape[1])) | ||
else: | ||
# input_feat = dense_feat[0].permute(1, 2, 0).reshape(-1, dense_feat.shape[1]) | ||
# Segment-wise traversability prediction using the average feature per segment | ||
input_feat = feat[seg.reshape(-1)] | ||
data = Data(x=input_feat) | ||
|
||
# Predict traversability per feature | ||
prediction = model.forward(data) | ||
|
||
if not anomaly_detection: | ||
out_trav = prediction.reshape(H, W, -1)[:, :, 0] | ||
else: | ||
losses = prediction["logprob"].sum(1) + prediction["log_det"] | ||
confidence = confidence_generator.inference_without_update(x=-losses) | ||
trav = confidence | ||
out_trav = trav.reshape(H, W, -1)[:, :, 0] | ||
|
||
# Publish traversability | ||
out_trav.cpu().numpy() | ||
|
||
# Store confidence | ||
loss_reco = F.mse_loss(prediction[:, 1:], data.x, reduction="none").mean(dim=1) | ||
confidence = confidence_generator.inference_without_update(x=loss_reco) | ||
out_confidence = confidence.reshape(H, W) | ||
out_confidence.cpu().numpy() |