-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
2,345 additions
and
10 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
<!doctype html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> | ||
<meta name="generator" content="pdoc 0.10.0" /> | ||
<title>multilearn API documentation</title> | ||
<meta name="description" content="" /> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> | ||
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> | ||
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> | ||
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> | ||
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> | ||
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> | ||
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> | ||
</head> | ||
<body> | ||
<main> | ||
<article id="content"> | ||
<header> | ||
<h1 class="title">Package <code>multilearn</code></h1> | ||
</header> | ||
<section id="section-intro"> | ||
</section> | ||
<section> | ||
<h2 class="section-title" id="header-submodules">Sub-modules</h2> | ||
<dl> | ||
<dt><code class="name"><a title="multilearn.datasets" href="datasets.html">multilearn.datasets</a></code></dt> | ||
<dd> | ||
<div class="desc"></div> | ||
</dd> | ||
<dt><code class="name"><a title="multilearn.models" href="models.html">multilearn.models</a></code></dt> | ||
<dd> | ||
<div class="desc"></div> | ||
</dd> | ||
<dt><code class="name"><a title="multilearn.plots" href="plots.html">multilearn.plots</a></code></dt> | ||
<dd> | ||
<div class="desc"></div> | ||
</dd> | ||
<dt><code class="name"><a title="multilearn.utils" href="utils.html">multilearn.utils</a></code></dt> | ||
<dd> | ||
<div class="desc"></div> | ||
</dd> | ||
</dl> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
</article> | ||
<nav id="sidebar"> | ||
<h1>Index</h1> | ||
<div class="toc"> | ||
<ul></ul> | ||
</div> | ||
<ul id="index"> | ||
<li><h3><a href="#header-submodules">Sub-modules</a></h3> | ||
<ul> | ||
<li><code><a title="multilearn.datasets" href="datasets.html">multilearn.datasets</a></code></li> | ||
<li><code><a title="multilearn.models" href="models.html">multilearn.models</a></code></li> | ||
<li><code><a title="multilearn.plots" href="plots.html">multilearn.plots</a></code></li> | ||
<li><code><a title="multilearn.utils" href="utils.html">multilearn.utils</a></code></li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</nav> | ||
</main> | ||
<footer id="footer"> | ||
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p> | ||
</footer> | ||
</body> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
<!doctype html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> | ||
<meta name="generator" content="pdoc 0.10.0" /> | ||
<title>multilearn.models API documentation</title> | ||
<meta name="description" content="" /> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> | ||
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> | ||
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> | ||
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> | ||
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> | ||
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> | ||
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> | ||
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> | ||
</head> | ||
<body> | ||
<main> | ||
<article id="content"> | ||
<header> | ||
<h1 class="title">Module <code>multilearn.models</code></h1> | ||
</header> | ||
<section id="section-intro"> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">from torch import nn | ||
|
||
|
||
class MultiNet(nn.Module): | ||
''' | ||
A general model for building multi-target learning NNs. | ||
Each separation of layers is symmetric across input datasets. | ||
''' | ||
|
||
def __init__( | ||
self, | ||
input_arch={}, | ||
mid_arch={64: 1, 32: 1}, | ||
out_arch={}, | ||
tasks=[0], | ||
): | ||
|
||
super(MultiNet, self).__init__() | ||
|
||
def make_layers(arch, is_out=False): | ||
|
||
hidden = nn.ModuleList() | ||
for neurons, layers in arch.items(): | ||
for i in range(layers): | ||
hidden.append(nn.LazyLinear(neurons)) | ||
hidden.append(nn.LeakyReLU()) | ||
|
||
if is_out: | ||
hidden.append(nn.LazyLinear(1)) | ||
|
||
hidden = nn.Sequential(*hidden) | ||
|
||
return hidden | ||
|
||
def separate(arch, tasks, is_out=False): | ||
|
||
separate = nn.ModuleDict() | ||
for t in tasks: | ||
i = make_layers(arch, is_out) | ||
separate[t] = i | ||
|
||
return separate | ||
|
||
self.input = separate(input_arch, tasks) | ||
self.mid = make_layers(mid_arch) | ||
self.out = separate(out_arch, tasks, True) | ||
|
||
def forward(self, x, prop): | ||
''' | ||
Use a model to predict. | ||
|
||
Args: | ||
x (nn.tensor): The features. | ||
prop: The property to predict. | ||
|
||
Returns: | ||
torch.FloatTensor: The predicted target value. | ||
''' | ||
|
||
for i in self.input[prop]: | ||
x = i(x) | ||
|
||
for i in self.mid: | ||
x = i(x) | ||
|
||
for i in self.out[prop]: | ||
x = i(x) | ||
|
||
return x</code></pre> | ||
</details> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
</section> | ||
<section> | ||
<h2 class="section-title" id="header-classes">Classes</h2> | ||
<dl> | ||
<dt id="multilearn.models.MultiNet"><code class="flex name class"> | ||
<span>class <span class="ident">MultiNet</span></span> | ||
<span>(</span><span>input_arch={}, mid_arch={64: 1, 32: 1}, out_arch={}, tasks=[0])</span> | ||
</code></dt> | ||
<dd> | ||
<div class="desc"><p>A general model for building multi-target learning NNs. | ||
Each separation of layers is symmetric across input datasets.</p> | ||
<p>Initialize internal Module state, shared by both nn.Module and ScriptModule.</p></div> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">class MultiNet(nn.Module): | ||
''' | ||
A general model for building multi-target learning NNs. | ||
Each separation of layers is symmetric across input datasets. | ||
''' | ||
|
||
def __init__( | ||
self, | ||
input_arch={}, | ||
mid_arch={64: 1, 32: 1}, | ||
out_arch={}, | ||
tasks=[0], | ||
): | ||
|
||
super(MultiNet, self).__init__() | ||
|
||
def make_layers(arch, is_out=False): | ||
|
||
hidden = nn.ModuleList() | ||
for neurons, layers in arch.items(): | ||
for i in range(layers): | ||
hidden.append(nn.LazyLinear(neurons)) | ||
hidden.append(nn.LeakyReLU()) | ||
|
||
if is_out: | ||
hidden.append(nn.LazyLinear(1)) | ||
|
||
hidden = nn.Sequential(*hidden) | ||
|
||
return hidden | ||
|
||
def separate(arch, tasks, is_out=False): | ||
|
||
separate = nn.ModuleDict() | ||
for t in tasks: | ||
i = make_layers(arch, is_out) | ||
separate[t] = i | ||
|
||
return separate | ||
|
||
self.input = separate(input_arch, tasks) | ||
self.mid = make_layers(mid_arch) | ||
self.out = separate(out_arch, tasks, True) | ||
|
||
def forward(self, x, prop): | ||
''' | ||
Use a model to predict. | ||
|
||
Args: | ||
x (nn.tensor): The features. | ||
prop: The property to predict. | ||
|
||
Returns: | ||
torch.FloatTensor: The predicted target value. | ||
''' | ||
|
||
for i in self.input[prop]: | ||
x = i(x) | ||
|
||
for i in self.mid: | ||
x = i(x) | ||
|
||
for i in self.out[prop]: | ||
x = i(x) | ||
|
||
return x</code></pre> | ||
</details> | ||
<h3>Ancestors</h3> | ||
<ul class="hlist"> | ||
<li>torch.nn.modules.module.Module</li> | ||
</ul> | ||
<h3>Methods</h3> | ||
<dl> | ||
<dt id="multilearn.models.MultiNet.forward"><code class="name flex"> | ||
<span>def <span class="ident">forward</span></span>(<span>self, x, prop) ‑> Callable[..., Any]</span> | ||
</code></dt> | ||
<dd> | ||
<div class="desc"><p>Use a model to predict.</p> | ||
<h2 id="args">Args</h2> | ||
<dl> | ||
<dt><strong><code>x</code></strong> : <code>nn.tensor</code></dt> | ||
<dd>The features.</dd> | ||
<dt><strong><code>prop</code></strong></dt> | ||
<dd>The property to predict.</dd> | ||
</dl> | ||
<h2 id="returns">Returns</h2> | ||
<dl> | ||
<dt><code>torch.FloatTensor</code></dt> | ||
<dd>The predicted target value.</dd> | ||
</dl></div> | ||
<details class="source"> | ||
<summary> | ||
<span>Expand source code</span> | ||
</summary> | ||
<pre><code class="python">def forward(self, x, prop): | ||
''' | ||
Use a model to predict. | ||
|
||
Args: | ||
x (nn.tensor): The features. | ||
prop: The property to predict. | ||
|
||
Returns: | ||
torch.FloatTensor: The predicted target value. | ||
''' | ||
|
||
for i in self.input[prop]: | ||
x = i(x) | ||
|
||
for i in self.mid: | ||
x = i(x) | ||
|
||
for i in self.out[prop]: | ||
x = i(x) | ||
|
||
return x</code></pre> | ||
</details> | ||
</dd> | ||
</dl> | ||
</dd> | ||
</dl> | ||
</section> | ||
</article> | ||
<nav id="sidebar"> | ||
<h1>Index</h1> | ||
<div class="toc"> | ||
<ul></ul> | ||
</div> | ||
<ul id="index"> | ||
<li><h3>Super-module</h3> | ||
<ul> | ||
<li><code><a title="multilearn" href="index.html">multilearn</a></code></li> | ||
</ul> | ||
</li> | ||
<li><h3><a href="#header-classes">Classes</a></h3> | ||
<ul> | ||
<li> | ||
<h4><code><a title="multilearn.models.MultiNet" href="#multilearn.models.MultiNet">MultiNet</a></code></h4> | ||
<ul class=""> | ||
<li><code><a title="multilearn.models.MultiNet.forward" href="#multilearn.models.MultiNet.forward">forward</a></code></li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</li> | ||
</ul> | ||
</nav> | ||
</main> | ||
<footer id="footer"> | ||
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p> | ||
</footer> | ||
</body> | ||
</html> |
Oops, something went wrong.