-
Notifications
You must be signed in to change notification settings - Fork 241
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
708 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import torch | ||
import triton | ||
from utils import ( | ||
QUANTILES, | ||
SingleBenchmarkRunInput, | ||
SingleBenchmarkRunOutput, | ||
_test_memory, | ||
parse_benchmark_script_args, | ||
run_benchmarks, | ||
) | ||
|
||
from liger_kernel.transformers.group_norm import LigerGroupNorm | ||
|
||
|
||
def bench_speed_group_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput: | ||
C = input.x | ||
provider = input.kernel_provider | ||
mode = input.kernel_operation_mode | ||
extra_benchmark_config = input.extra_benchmark_config | ||
M = extra_benchmark_config["M"] | ||
H = extra_benchmark_config["H"] | ||
channels_per_group = extra_benchmark_config["channels_per_group"] | ||
eps = extra_benchmark_config["eps"] | ||
dtype = extra_benchmark_config["dtype"] | ||
|
||
x_shape = (M, C, H) | ||
triton_ln = LigerGroupNorm( | ||
num_channels=C, num_groups=C // channels_per_group, eps=eps | ||
).to("cuda") | ||
torch_ln = torch.nn.GroupNorm( | ||
num_groups=C // channels_per_group, num_channels=C, eps=eps | ||
).to("cuda") | ||
|
||
x = torch.randn(x_shape, dtype=dtype, device="cuda") | ||
dy = torch.randn_like(x) | ||
x.requires_grad_(True) | ||
|
||
def y_fwd(): | ||
if provider == "liger": | ||
return triton_ln(x) | ||
if provider == "huggingface": | ||
return torch_ln(x) | ||
|
||
if mode == "forward": | ||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
y_fwd, quantiles=QUANTILES, grad_to_none=[x], rep=500 | ||
) | ||
elif mode == "backward": | ||
y = y_fwd() | ||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
lambda: y.backward(dy, retain_graph=True), | ||
quantiles=QUANTILES, | ||
grad_to_none=[x], | ||
rep=500, | ||
) | ||
elif mode == "full": | ||
|
||
def full(): | ||
y = y_fwd() | ||
y.backward(dy, retain_graph=True) | ||
|
||
ms_50, ms_20, ms_80 = triton.testing.do_bench( | ||
full, quantiles=QUANTILES, grad_to_none=[x], rep=500 | ||
) | ||
|
||
return SingleBenchmarkRunOutput( | ||
y_20=ms_20, | ||
y_50=ms_50, | ||
y_80=ms_80, | ||
) | ||
|
||
|
||
def bench_memory_group_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput: | ||
C = input.x | ||
provider = input.kernel_provider | ||
extra_benchmark_config = input.extra_benchmark_config | ||
M = extra_benchmark_config["M"] | ||
H = extra_benchmark_config["H"] | ||
channels_per_group = extra_benchmark_config["channels_per_group"] | ||
eps = extra_benchmark_config["eps"] | ||
dtype = extra_benchmark_config["dtype"] | ||
|
||
x_shape = (M, C, H) | ||
triton_ln = LigerGroupNorm( | ||
num_channels=C, num_groups=C // channels_per_group, eps=eps | ||
).to("cuda") | ||
torch_ln = torch.nn.GroupNorm( | ||
num_groups=C // channels_per_group, num_channels=C, eps=eps | ||
).to("cuda") | ||
|
||
x = torch.randn(x_shape, dtype=dtype, device="cuda") | ||
dy = torch.randn_like(x) | ||
x.requires_grad_(True) | ||
|
||
def y_fwd(): | ||
if provider == "liger": | ||
return triton_ln(x) | ||
if provider == "huggingface": | ||
return torch_ln(x) | ||
|
||
def full(): | ||
y = y_fwd() | ||
y.backward(dy, retain_graph=True) | ||
|
||
mem_50, mem_20, mem_80 = _test_memory(full, quantiles=QUANTILES) | ||
return SingleBenchmarkRunOutput( | ||
y_20=mem_20, | ||
y_50=mem_50, | ||
y_80=mem_80, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_benchmark_script_args() | ||
|
||
common_configs = { | ||
"kernel_name": "group_norm", | ||
"x_name": "C", | ||
"x_label": "num_channels", | ||
"x_values": [2**i for i in range(5, 12)], | ||
"kernel_providers": ["liger", "huggingface"], | ||
"extra_benchmark_configs": [ | ||
{ | ||
"M": 128, | ||
"H": 512, | ||
"channels_per_group": 4, | ||
"dtype": torch.float32, | ||
"eps": 1e-6, | ||
} | ||
], | ||
"overwrite": args.overwrite, | ||
} | ||
|
||
run_benchmarks( | ||
bench_test_fn=bench_speed_group_norm, | ||
kernel_operation_modes=["forward", "full", "backward"], | ||
metric_name="speed", | ||
metric_unit="ms", | ||
**common_configs | ||
) | ||
run_benchmarks( | ||
bench_test_fn=bench_memory_group_norm, | ||
kernel_operation_modes=["full", "forward", "backward"], | ||
metric_name="memory", | ||
metric_unit="MB", | ||
**common_configs | ||
) |
Oops, something went wrong.