Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSumExp Op #3201

Merged
merged 20 commits into from
May 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -966,6 +966,55 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.op, resultType, data);
return success();
});
patterns.onOp(
"ReduceLogSumExp", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Value data;
int64_t keepDims, noop_with_empty_axes;
if (binder.tensorOperandAtIndex(data, 0) ||
binder.tensorResultType(resultType) ||
binder.s64IntegerAttr(keepDims, "keepdims", 1) ||
binder.s64IntegerAttr(noop_with_empty_axes, "noop_with_empty_axes",
0))
return failure();

// out = Log(reducesum(exp(data)))
Value castDType = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(/*Float64Type*/ 7));
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value constFalse =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
auto size = data.getType()
.dyn_cast<Torch::ValueTensorType>()
.getOptionalSizes();
auto f64ResultType = rewriter.getType<Torch::ValueTensorType>(
size, rewriter.getF64Type());
Value dataCast = rewriter.create<Torch::AtenToDtypeOp>(
binder.getLoc(), f64ResultType, data, castDType,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
Value dataExp = rewriter.create<Torch::AtenExpOp>(
binder.getLoc(), f64ResultType, dataCast);
auto f64ReduceType = rewriter.getType<Torch::ValueTensorType>(
resultType.getOptionalSizes(), rewriter.getF64Type());
auto reducedSumBool = reducedSumImpl(
binder, rewriter, dataExp, f64ReduceType,
/*storeValue=*/data, keepDims, noop_with_empty_axes, true);
if (failed(reducedSumBool))
return rewriter.notifyMatchFailure(
binder.op,
"Failed to perform sum operation on square of operand");
Value finalResult = rewriter.create<Torch::AtenLogOp>(
binder.getLoc(), f64ReduceType, data);
Value resultDtype = Torch::getDtypeIntValueForType(
rewriter, binder.getLoc(), resultType.getDtype());
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
binder.op, resultType, finalResult, resultDtype,
/*non_blocking=*/constFalse, /*copy=*/constFalse,
/*memory_format=*/noneVal);
return success();
});
patterns.onOp("ReduceSum", 1,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Expand Down
97 changes: 97 additions & 0 deletions test/Conversion/TorchOnnxToTorch/simple_ops_q_to_z.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -911,6 +911,103 @@ func.func @test_reduce_log_sum_do_not_keepdims_example(%arg0:!torch.vtensor<[3,2

// -----

// CHECK-LABEL: func.func @test_reduce_log_sum_exp_default_axes_keepdims_example
func.func @test_reduce_log_sum_exp_default_axes_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT7:.+]] = torch.constant.int 7
// CHECK: %[[NONE_0:.+]] = torch.constant.none
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %arg0, %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[3,2,2],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[EXP:.+]] = torch.aten.exp %[[CAST]] : !torch.vtensor<[3,2,2],f64> -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[DIMS:.+]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: %[[NONE_1:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIMS]], %[[TRUE]], %[[NONE_1]] : !torch.vtensor<[3,2,2],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f64>
// CHECK: %[[LOG:.+]] = torch.aten.log %[[SUM]] : !torch.vtensor<[1,1,1],f64> -> !torch.vtensor<[1,1,1],f64>
// CHECK: %[[INT6:.+]] = torch.constant.int 6
// CHECK: %[[CASTLIKE:.+]] = torch.aten.to.dtype %[[LOG]], %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[1,1,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[1,1,1],f32>
// CHECK: return %[[CASTLIKE]] : !torch.vtensor<[1,1,1],f32>
%0 = torch.operator "onnx.ReduceLogSumExp"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32>
return %0 : !torch.vtensor<[1,1,1],f32>
}

// -----

// CHECK-LABEL: func.func @test_reduce_log_sum_exp_do_not_keepdims_example_expanded
func.func @test_reduce_log_sum_exp_do_not_keepdims_example_expanded(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT7:.+]] = torch.constant.int 7
// CHECK: %[[NONE_0:.+]] = torch.constant.none
// CHECK: %[[FALSE_0:.+]] = torch.constant.bool false
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %arg0, %[[INT7]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[3,2,2],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[EXP:.+]] = torch.aten.exp %[[CAST]] : !torch.vtensor<[3,2,2],f64> -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[SELECT:.+]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT0_0]] : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: %[[ITEM:.+]] = torch.aten.item %[[SELECT]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: %[[DIMS:.+]] = torch.prim.ListConstruct %[[ITEM]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[FALSE_1:.+]] = torch.constant.bool false
// CHECK: %[[NONE_1:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIMS]], %[[FALSE_1]], %[[NONE_1]] : !torch.vtensor<[3,2,2],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f64>
// CHECK: %[[LOG:.+]] = torch.aten.log %[[SUM]] : !torch.vtensor<[3,2],f64> -> !torch.vtensor<[3,2],f64>
// CHECK: %[[INT6:.+]] = torch.constant.int 6
// CHECK: %[[CASTLIKE:.+]] = torch.aten.to.dtype %[[LOG]], %[[INT6]], %[[FALSE_0]], %[[FALSE_0]], %[[NONE_0]] : !torch.vtensor<[3,2],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2],f32>
// CHECK: return %[[CASTLIKE]] : !torch.vtensor<[3,2],f32>
%0 = torch.operator "onnx.ReduceLogSumExp"(%arg0, %arg1) {torch.onnx.keepdims = 0 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2],f32>
return %0 : !torch.vtensor<[3,2],f32>
}

// -----

// CHECK-LABEL: func.func @test_reduce_log_sum_exp_keep_dims_example
func.func @test_reduce_log_sum_exp_keep_dims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2,1],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT7:.+]] = torch.constant.int 7
// CHECK: %[[NONE_0:.+]] = torch.constant.none
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %arg0, %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[3,2,2],f32>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[EXP:.+]] = torch.aten.exp %[[CAST]] : !torch.vtensor<[3,2,2],f64> -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[SELECT:.+]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT0_0]] : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: %[[ITEM:.+]] = torch.aten.item %[[SELECT]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: %[[DIMS:.+]] = torch.prim.ListConstruct %[[ITEM]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: %[[NONE_1:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIMS]], %[[TRUE]], %[[NONE_1]] : !torch.vtensor<[3,2,2],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2,1],f64>
// CHECK: %[[LOG:.+]] = torch.aten.log %[[SUM]] : !torch.vtensor<[3,2,1],f64> -> !torch.vtensor<[3,2,1],f64>
// CHECK: %[[INT6:.+]] = torch.constant.int 6
// CHECK: %[[CASTLIKE:.+]] = torch.aten.to.dtype %[[LOG]], %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[3,2,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,1],f32>
// CHECK: return %[[CASTLIKE]] : !torch.vtensor<[3,2,1],f32>
%0 = torch.operator "onnx.ReduceLogSumExp"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],f32>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2,1],f32>
return %0 : !torch.vtensor<[3,2,1],f32>
}

// -----

// CHECK-LABEL: func.func @test_reduce_log_sum_exp_keep_dims_int_input_example
func.func @test_reduce_log_sum_exp_keep_dims_int_input_example(%arg0: !torch.vtensor<[3,2,2],si64>, %arg1: !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2,1],f32> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 18 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT7:.+]] = torch.constant.int 7
// CHECK: %[[NONE_0:.+]] = torch.constant.none
// CHECK: %[[FALSE:.+]] = torch.constant.bool false
// CHECK: %[[CAST:.+]] = torch.aten.to.dtype %arg0, %[[INT7]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[3,2,2],si64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[EXP:.+]] = torch.aten.exp %[[CAST]] : !torch.vtensor<[3,2,2],f64> -> !torch.vtensor<[3,2,2],f64>
// CHECK: %[[INT0:.+]] = torch.constant.int 0
// CHECK: %[[INT0_0:.+]] = torch.constant.int 0
// CHECK: %[[SELECT:.+]] = torch.aten.select.int %arg1, %[[INT0]], %[[INT0_0]] : !torch.vtensor<[1],si64>, !torch.int, !torch.int -> !torch.vtensor<[1],si64>
// CHECK: %[[ITEM:.+]] = torch.aten.item %[[SELECT]] : !torch.vtensor<[1],si64> -> !torch.int
// CHECK: %[[DIMS:.+]] = torch.prim.ListConstruct %[[ITEM]] : (!torch.int) -> !torch.list<int>
// CHECK: %[[TRUE:.+]] = torch.constant.bool true
// CHECK: %[[NONE_1:.+]] = torch.constant.none
// CHECK: %[[SUM:.+]] = torch.aten.sum.dim_IntList %[[EXP]], %[[DIMS]], %[[TRUE]], %[[NONE_1]] : !torch.vtensor<[3,2,2],f64>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,2,1],f64>
// CHECK: %[[LOG:.+]] = torch.aten.log %[[SUM]] : !torch.vtensor<[3,2,1],f64> -> !torch.vtensor<[3,2,1],f64>
// CHECK: %[[INT6:.+]] = torch.constant.int 6
// CHECK: %[[CASTLIKE:.+]] = torch.aten.to.dtype %[[LOG]], %[[INT6]], %[[FALSE]], %[[FALSE]], %[[NONE_0]] : !torch.vtensor<[3,2,1],f64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,2,1],f32>
// CHECK: return %[[CASTLIKE]] : !torch.vtensor<[3,2,1],f32>
%0 = torch.operator "onnx.ReduceLogSumExp"(%arg0, %arg1) {torch.onnx.keepdims = 1 : si64} : (!torch.vtensor<[3,2,2],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[3,2,1],f32>
return %0 : !torch.vtensor<[3,2,1],f32>
}

// -----

// CHECK-LABEL: func.func @test_reduce_sum_default_axes_keepdims_example
func.func @test_reduce_sum_default_axes_keepdims_example(%arg0: !torch.vtensor<[3,2,2],f32>, %arg1: !torch.vtensor<[0],si64>) -> !torch.vtensor<[1,1,1],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[INT0:.+]] = torch.constant.int 0
Expand Down
Loading