Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] Fix Onnx.Selu lowering and canonicalizer for IntImplicit op #3221

Merged
merged 1 commit into from
Apr 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 30 additions & 5 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainQtoZ.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -847,15 +847,21 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(

patterns.onOp(
"Selu", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
// y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0
Torch::ValueTensorType resultType;
float alpha, gamma;
Value operand;
// Refer https://onnx.ai/onnx/operators/onnx__Selu.html for the default
// alpha and gamma values.
if (binder.tensorOperand(operand) ||
binder.f32FloatAttr(alpha, "alpha") ||
binder.f32FloatAttr(gamma, "gamma") ||
binder.f32FloatAttr(alpha, "alpha", 1.67326) ||
binder.f32FloatAttr(gamma, "gamma", 1.0507) ||
vivekkhandelwal1 marked this conversation as resolved.
Show resolved Hide resolved
binder.tensorResultType(resultType))
return failure();

Torch::ValueTensorType inputType =
operand.getType().cast<Torch::ValueTensorType>();

Value vAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), alpha));
Expand All @@ -864,12 +870,31 @@ void mlir::torch::onnx_c::populateDefaultDomainQtoZ(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), gamma));

Value vInputScale = rewriter.create<Torch::ConstantFloatOp>(
Value cstOne = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getFloatAttr(rewriter.getF64Type(), 1.0));

rewriter.replaceOpWithNewOp<Torch::AtenEluOp>(
vivekkhandelwal1 marked this conversation as resolved.
Show resolved Hide resolved
binder.op, resultType, operand, vAlpha, vScale, vInputScale);
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
Value zeroTensor = rewriter.create<Torch::AtenZerosLikeOp>(
binder.getLoc(), resultType, operand, cstNone, cstNone, cstNone,
cstNone, cstNone);
Value exp = rewriter.create<Torch::AtenExpOp>(binder.getLoc(),
resultType, operand);
Value expMulAlpha = rewriter.create<Torch::AtenMulScalarOp>(
binder.getLoc(), resultType, exp, vAlpha);
Value expMulAlphaSubAlpha = rewriter.create<Torch::AtenSubScalarOp>(
binder.getLoc(), resultType, expMulAlpha, vAlpha, cstOne);
Value neg = rewriter.create<Torch::AtenMulScalarOp>(
binder.getLoc(), resultType, expMulAlphaSubAlpha, vScale);
Value pos = rewriter.create<Torch::AtenMulScalarOp>(
binder.getLoc(), resultType, operand, vScale);
Type compareType = inputType.getWithSizesAndDtype(
inputType.getOptionalSizes(), rewriter.getI1Type());
Value xLessThanZero = rewriter.create<Torch::AtenLtTensorOp>(
binder.getLoc(), compareType, operand, zeroTensor);

rewriter.replaceOpWithNewOp<Torch::AtenWhereSelfOp>(
binder.op, resultType, xLessThanZero, neg, pos);
return success();
});
patterns.onOp("ReduceL1", 1,
Expand Down
19 changes: 14 additions & 5 deletions lib/Dialect/Torch/IR/TorchOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -140,18 +140,27 @@ static Value getScalarIntValue(Value input, Location loc,
return nullptr;

Type inputDtype = inputTensorType.getOptionalDtype();
if (!inputDtype || !inputDtype.isInteger(64))
if (!inputDtype || !(inputDtype.isInteger(64) || inputDtype.isInteger(1)))
return nullptr;

std::optional<unsigned> inputRank = getTensorRank(input);
if (!inputRank || *inputRank != 0)
return nullptr;

if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
auto val = cast<DenseIntElementsAttr>(valueTensorLiteralOp.getValue())
.getSplatValue<int64_t>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
if (inputDtype.isInteger(64)) {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseIntElementsAttr>()
.getSplatValue<int64_t>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
} else {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseIntElementsAttr>()
.getSplatValue<bool>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
}
} else if (auto primNumToTensorScalarOp =
input.getDefiningOp<PrimNumToTensorScalarOp>()) {
return primNumToTensorScalarOp.getA();
Expand Down
3 changes: 0 additions & 3 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -2124,7 +2124,6 @@
"ElementwiseAtenFloorDivideTensorNegativeModule_basic",
"ElementwiseLog10IntModule_basic",
"ElementwiseLog2IntModule_basic",
"ElementwiseSeluModule_basic",
"FlipModuleStaticShape_basic",
"FlipNegativeIndexModule_basic",
"HardsigmoidModule_basic",
Expand Down Expand Up @@ -2637,8 +2636,6 @@
"CopyWithDifferentDTypesModule_basic",
"CosineSimilarityStaticBroadcastModule_basic",
"CumsumInputDtypeInt32Module_basic",
"DropoutTrainModule_basic",
"DropoutTrainStaticShapeModule_basic",
"ElementwiseAcosIntModule_basic",
"ElementwiseAsinIntModule_basic",
"ElementwiseAtanTensorIntModule_basic",
Expand Down
16 changes: 12 additions & 4 deletions test/Conversion/TorchOnnxToTorch/simple_ops_q_to_z.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -582,10 +582,18 @@ func.func @test_softmax_negative_axis(%arg0: !torch.vtensor<[3,4,5],f32>) -> !to

// CHECK-LABEL: func.func @test_selu
func.func @test_selu(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.opset_version = 6 : si64} {
// CHECK-DAG: %[[F1:.+]] = torch.constant.float 1
// CHECK-DAG: %[[F2:.+]] = torch.constant.float 2
// CHECK-DAG: %[[F3:.+]] = torch.constant.float 3
// CHECK: %[[ELU:.+]] = torch.aten.elu %arg0, %[[F2]], %[[F3]], %[[F1]]
// CHECK: %[[F2:.+]] = torch.constant.float 2.000000e+00
// CHECK: %[[F3:.+]] = torch.constant.float 3.000000e+00
// CHECK: %[[F1:.+]] = torch.constant.float 1.000000e+00
// CHECK: %[[NONE:.+]] = torch.constant.none
// CHECK: %[[ZEROS:.+]] = torch.aten.zeros_like %arg0, %none, %none, %none, %none, %none : !torch.vtensor<[3,4,5],f32>, !torch.none, !torch.none, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[EXP:.+]] = torch.aten.exp %arg0 : !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[MUL:.+]] = torch.aten.mul.Scalar %[[EXP]], %[[F2]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[SUB:.+]] = torch.aten.sub.Scalar %[[MUL]], %[[F2]], %[[F1]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[MUL_1:.+]] = torch.aten.mul.Scalar %[[SUB]], %[[F3]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[MUL_2:.+]] = torch.aten.mul.Scalar %arg0, %[[F3]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[LT:.+]] = torch.aten.lt.Tensor %arg0, %[[ZEROS]] : !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],i1>
// CHECK: torch.aten.where.self %[[LT]], %[[MUL_1]], %[[MUL_2]] : !torch.vtensor<[3,4,5],i1>, !torch.vtensor<[3,4,5],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
%0 = torch.operator "onnx.Selu"(%arg0) {torch.onnx.alpha = 2.000000e+00 : f32, torch.onnx.gamma = 3.000000e+00 : f32} : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
return %0 : !torch.vtensor<[3,4,5],f32>
}
Expand Down
Loading