Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] Fix AveragePool attributes support #3235

Merged
merged 1 commit into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainAtoF.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -441,9 +441,17 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
for (int64_t i : padding) {
// Onnx pads format: [x1_begin, x2_begin…x1_end, x2_end,…]
// Pytorch pads format: [x1, x2,...] or [x], assume begin==end for all
// axes x.
int64_t paddingSizeHalf = padding.size() / 2;
for (int64_t i = 0; i < paddingSizeHalf; ++i) {
// Check if onnx padding attribute is symmetric.
if (padding[i] != padding[i + paddingSizeHalf])
return rewriter.notifyMatchFailure(
binder.op, "onnx padding attribute is not symmetric");
cstPadding.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
binder.getLoc(), rewriter.getI64IntegerAttr(padding[i])));
}
for (int64_t i : strides) {
cstStrides.push_back(rewriter.create<Torch::ConstantIntOp>(
Expand Down
181 changes: 149 additions & 32 deletions lib/Conversion/TorchToLinalg/Pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -619,13 +619,6 @@ class ConvertAtenAvgPoolOp : public OpConversionPattern<OpTy> {
return rewriter.notifyMatchFailure(
op, "count_include_pad must be a constant");

// If the padding is zero then there is no padding to include.
if (!countIncludePad &&
!llvm::all_of(paddingInts, [](int64_t p) { return p == 0; })) {
return rewriter.notifyMatchFailure(
op, "unimplemented: count_include_pad is expected to be true");
}

// `sumPool` contains the result of sumpool operation over the input.
Value sumPool, paddedInput;
SmallVector<Value, Dim + 2> outTensorShape;
Expand All @@ -635,9 +628,142 @@ class ConvertAtenAvgPoolOp : public OpConversionPattern<OpTy> {
paddingInts, dilationInts, rewriter.getZeroAttr(inputElementType),
outTensorShape, paddedInput, sumPool)))
return rewriter.notifyMatchFailure(op, "unable to compute sumpool");
// }

Value divisor = kernelSizeIntValues[0];
// Compute the average of sumPool.
Value outputTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outTensorShape), resultElementType);
SmallVector<AffineMap> indexingMapsAvg(
2, rewriter.getMultiDimIdentityMap(Dim + 2));
SmallVector<utils::IteratorType> iteratorTypesAvg(
Dim + 2, utils::IteratorType::parallel);
Value avgPool;
Value divisor;
// Case1: AtenAvgPool1d/2dOp with countIncludePad=false support.
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
auto selfType = cast<RankedTensorType>(self.getType());
const int64_t selfRank = selfType.getRank();
int64_t wDim = toPositiveDim(-1, selfRank);
int64_t hDim = toPositiveDim(-2, selfRank);
Value inputHeight = getDimOp(rewriter, loc, self, hDim);
Value inputWidth = getDimOp(rewriter, loc, self, wDim);
RankedTensorType sumPoolType = cast<RankedTensorType>(sumPool.getType());
const int64_t rank = sumPoolType.getRank();
int dimH = toPositiveDim(-2, rank);
int dimW = toPositiveDim(-1, rank);
avgPool =
rewriter
.create<linalg::GenericOp>(
loc, outputTensor.getType(), sumPool, outputTensor,
/*indexingMaps=*/indexingMapsAvg,
/*iteratorTypes=*/iteratorTypesAvg,
[&](OpBuilder &b, Location loc, ValueRange args) {
// The algorithm for computing the divisor with
// count_include_pad is manily based on pytorch
// implementation. The following code is comment
// with pytorch code.
// https://github.com/pytorch/pytorch/blob/4a6dfbe4806b361c43210dfd56db64c4097c66bb/aten/src/ATen/native/cpu/AvgPoolKernel.cpp#L78
Value indexOh =
b.create<linalg::IndexOp>(loc, /*value=*/dimH);
Value oh = castIndexToInt64(b, loc, indexOh);
Value indexOw =
b.create<linalg::IndexOp>(loc, /*value=*/dimW);
Value ow = castIndexToInt64(b, loc, indexOw);

// int64_t ih0 = oh * dH - padH;
Value dH = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(strideInts[0]));
Value padH = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(paddingInts[0]));
Value ohDH = b.create<arith::MulIOp>(loc, oh, dH);
Value ih0 = b.create<arith::SubIOp>(loc, ohDH, padH);
// int64_t iw0 = ow * dW - padW;
Value dW = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(strideInts[1]));
Value padW = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(paddingInts[1]));
Value owDW = b.create<arith::MulIOp>(loc, ow, dW);
Value iw0 = b.create<arith::SubIOp>(loc, owDW, padW);
// int64_t ih1 = std::min(ih0 + kH, input_height + padH);
Value ih = castIndexToInt64(b, loc, inputHeight);
Value ih0KH = b.create<arith::AddIOp>(
loc, ih0, kernelSizeIntValues[0]);
Value ihPadH = b.create<arith::AddIOp>(loc, ih, padH);
Value ih1 = b.create<arith::MinSIOp>(loc, ih0KH, ihPadH);
// int64_t iw1 = std::min(iw0 + kW, input_width + padW);
Value iw = castIndexToInt64(b, loc, inputWidth);
Value iw0KW = b.create<arith::AddIOp>(
loc, iw0, kernelSizeIntValues[1]);
Value iwPadW = b.create<arith::AddIOp>(loc, iw, padW);
Value iw1 = b.create<arith::MinSIOp>(loc, iw0KW, iwPadW);
// int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
Value ih1Ih0 = b.create<arith::SubIOp>(loc, ih1, ih0);
Value iw1Iw0 = b.create<arith::SubIOp>(loc, iw1, iw0);
Value poolSize =
b.create<arith::MulIOp>(loc, ih1Ih0, iw1Iw0);
// ih0 = std::max(ih0, 0);
Value cstZero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(0));
Value ih0Clamped =
b.create<arith::MaxSIOp>(loc, ih0, cstZero);
// iw0 = std::max(iw0, 0);
Value iw0Clamped =
b.create<arith::MaxSIOp>(loc, iw0, cstZero);
// ih1 = std::min(ih1, input_height);
Value ih1Clamped = b.create<arith::MinSIOp>(loc, ih1, ih);
// iw1 = std::min(iw1, input_width);
Value iw1Clamped = b.create<arith::MinSIOp>(loc, iw1, iw);
// if (divisor_override.has_value()) {
// divisor = divisor_override.value();
// } else {
// if(count_include_pad) {
// divisor = pool_size;
// } else {
// divisor = (ih1 - ih0) * (iw1 - iw0);
// }
// }
if (countIncludePad) {
divisor = convertScalarToDtype(b, loc, poolSize,
resultElementType);
} else {
Value ih1_ih0 =
b.create<arith::SubIOp>(loc, ih1Clamped, ih0Clamped);
Value iw1_iw0 =
b.create<arith::SubIOp>(loc, iw1Clamped, iw0Clamped);
divisor = b.create<arith::MulIOp>(loc, ih1_ih0, iw1_iw0);
}
// AtenAvgPool2/3dOp has an optional divisor_override
// attribute while AtenAvgPool1dOp does not.
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
if (!isa<Torch::NoneType>(
op.getDivisorOverride().getType()))
divisor = adaptor.getDivisorOverride();
}

divisor = convertScalarToDtype(b, loc, divisor,
resultElementType);
Value avg;
if (isa<mlir::IntegerType>(resultElementType))
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
else if (isa<mlir::FloatType>(resultElementType))
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
b.create<linalg::YieldOp>(loc, avg);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
return success();
}

// TODO: Add support for count_include_pad equal to `False` in
// AtenAvgPool1/3dOp.
if (!countIncludePad &&
!llvm::all_of(paddingInts, [](int64_t p) { return p == 0; })) {
return rewriter.notifyMatchFailure(
op, "unimplemented: count_include_pad is expected to be true for "
"AtenAvgPool3dOp");
}

// Case2: AtenAvgPool1/3dOp without count_include_pad equal to `False`.
divisor = kernelSizeIntValues[0];
for (uint32_t i = 1; i < kernelSizeIntValues.size(); i++) {
divisor =
rewriter.create<arith::MulIOp>(loc, divisor, kernelSizeIntValues[i]);
Expand All @@ -648,29 +774,20 @@ class ConvertAtenAvgPoolOp : public OpConversionPattern<OpTy> {
: adaptor.getDivisorOverride();
}
divisor = convertScalarToDtype(rewriter, loc, divisor, resultElementType);

Value outputTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(outTensorShape), resultElementType);
SmallVector<AffineMap> indexingMapsAvg(
2, rewriter.getMultiDimIdentityMap(Dim + 2));
SmallVector<utils::IteratorType> iteratorTypesAvg(
Dim + 2, utils::IteratorType::parallel);
Value avgPool =
rewriter
.create<linalg::GenericOp>(
loc, outputTensor.getType(), sumPool, outputTensor,
/*indexingMaps=*/indexingMapsAvg,
/*iteratorTypes=*/iteratorTypesAvg,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value avg;
if (isa<mlir::IntegerType>(resultElementType))
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
else if (isa<mlir::FloatType>(resultElementType))
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
b.create<linalg::YieldOp>(loc, avg);
})
.getResult(0);

avgPool = rewriter
.create<linalg::GenericOp>(
loc, outputTensor.getType(), sumPool, outputTensor,
/*indexingMaps=*/indexingMapsAvg,
/*iteratorTypes=*/iteratorTypesAvg,
[&](OpBuilder &b, Location loc, ValueRange args) {
Value avg;
if (isa<mlir::IntegerType>(resultElementType))
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
else if (isa<mlir::FloatType>(resultElementType))
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
b.create<linalg::YieldOp>(loc, avg);
})
.getResult(0);
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
return success();
}
Expand Down
3 changes: 3 additions & 0 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -888,6 +888,7 @@
"Aten_CastLongModule_basic",
"AvgPool1dStaticModule_basic",
"AvgPool2dStaticModule_basic",
"AvgPool2dCountIncludePadFalseStaticModule_basic",
"AvgPool3dStaticModule_basic",
"BaddbmmBroadcast1DInputModule_basic",
"BaddbmmBroadcast2DInputModule_basic",
Expand Down Expand Up @@ -1479,6 +1480,7 @@
# Write the TOSA set as a "passing" set as it is very early in development
# and very few tests work yet.
TOSA_PASS_SET = {
"AvgPool2dCountIncludePadFalseStaticModule_basic",
"TensorSplitSections_GetItemModule_basic",
"TensorSplitSections_ListUnpackModule_basic",
"AtenLinear2D_basic",
Expand Down Expand Up @@ -1950,6 +1952,7 @@
TOSA_PASS_SET
| {
### Tests additionally passing in make_fx_tosa
"AvgPool2dCountIncludePadFalseStaticModule_basic",
"AtenLinear1D_basic",
"AtenLinearMatVec_basic",
"AtenLinearVecMatBias_basic",
Expand Down
29 changes: 29 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -1017,6 +1017,35 @@ def AvgPool2dStaticModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 2, 10, 20, low=-1))


class AvgPool2dCountIncludePadFalseStaticModule(torch.nn.Module):

def __init__(self):
super().__init__()
self.ap2d = torch.nn.AvgPool2d(
kernel_size=[3, 3],
stride=[1, 1],
padding=[1, 1],
ceil_mode=False,
count_include_pad=False,
divisor_override=None,
)

@export
@annotate_args(
[
None,
([32, 384, 25, 25], torch.float32, True),
]
)
def forward(self, x):
return self.ap2d(x)


@register_test_case(module_factory=lambda: AvgPool2dCountIncludePadFalseStaticModule())
def AvgPool2dCountIncludePadFalseStaticModule_basic(module, tu: TestUtils):
module.forward(tu.rand(32, 384, 25, 25, low=-1))


class AvgPool2dDivisorOverrideModule(torch.nn.Module):
def __init__(self):
super().__init__()
Expand Down
Loading