Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] Fix Onnx.Hardsigmoid lowering #3239

Merged
merged 2 commits into from
Jun 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 15 additions & 13 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,29 +46,31 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(alpha));

Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(beta));

// Expression: alpha * x + beta
Value alpha_x_plus_beta = rewriter.create<Torch::AtenAddScalarOp>(
binder.getLoc(), resultType, tensorOperand, constBeta,
/*alpha=*/constAlpha);
Value alphaMulX = rewriter.create<Torch::AtenMulScalarOp>(
binder.getLoc(), resultType, tensorOperand, constAlpha);
Value constOne = rewriter.create<Torch::ConstantFloatOp>(
vivekkhandelwal1 marked this conversation as resolved.
Show resolved Hide resolved
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
rewriter.getF64FloatAttr(1.0));
Value alphaMulXPlusBeta = rewriter.create<Torch::AtenAddScalarOp>(
binder.getLoc(), resultType, alphaMulX, constBeta,
/*alpha=*/constOne);
vivekkhandelwal1 marked this conversation as resolved.
Show resolved Hide resolved

// Expression: min(1, alpha * x + beta)
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(1));
Value oneTensor = createRank0Tensor(rewriter, binder.getLoc(),
resultType, constantOne);
Value oneTensor =
createRank0Tensor(rewriter, binder.getLoc(), resultType, constOne);
Value minExpression = rewriter.create<Torch::AtenMinimumOp>(
binder.getLoc(), resultType, oneTensor, alpha_x_plus_beta);
binder.getLoc(), resultType, oneTensor, alphaMulXPlusBeta);

// Expression: max(0, min(1, alpha * x + beta))
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(0));
Value zeroTensor = createRank0Tensor(rewriter, binder.getLoc(),
resultType, constantZero);
Value constZero = rewriter.create<Torch::ConstantFloatOp>(
binder.getLoc(), rewriter.getF64FloatAttr(0.0));
Value zeroTensor =
createRank0Tensor(rewriter, binder.getLoc(), resultType, constZero);
rewriter.replaceOpWithNewOp<Torch::AtenMaximumOp>(
binder.op, resultType, zeroTensor, minExpression);
return success();
Expand Down
2 changes: 0 additions & 2 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -2201,8 +2201,6 @@
"ElementwiseLog2IntModule_basic",
"FlipModuleStaticShape_basic",
"FlipNegativeIndexModule_basic",
"HardsigmoidModule_basic",
"HardsigmoidRandomModule_basic",
"PixelShuffleModuleStaticRank4Float32_basic",
"ReflectionPad1dModule2dInput_Right",
"ReflectionPad1dModule2dInput_basic",
Expand Down
34 changes: 18 additions & 16 deletions test/Conversion/TorchOnnxToTorch/simple_ops_g_to_p.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -891,21 +891,21 @@ func.func @test_pad_optional_constant(%arg0: !torch.vtensor<[3,4],f32>, %arg1: !
func.func @test_hardsigmoid_example(%arg0: !torch.vtensor<[3],f32>) -> !torch.vtensor<[3],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 6 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[ALPHA_FLOAT:.*]] = torch.constant.float 5.000000e-01
// CHECK: %[[BETA_FLOAT:.*]] = torch.constant.float 0.60000002384185791
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %arg0, %[[BETA_FLOAT:.*]], %[[ALPHA_FLOAT:.*]] : !torch.vtensor<[3],f32>, !torch.float, !torch.float -> !torch.vtensor<[3],f32>
// CHECK: %[[INT_1:.*]] = torch.constant.int 1
// CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3],f32>, !torch.float -> !torch.vtensor<[3],f32>
// CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3],f32>, !torch.float, !torch.float -> !torch.vtensor<[3],f32>
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3],f32> -> !torch.vtensor<[3],f32>
// CHECK: %[[INT_0:.*]] = torch.constant.int 0
// CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[RESULT:.*]] = torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3],f32> -> !torch.vtensor<[3],f32>
// CHECK: return %[[RESULT:.*]] : !torch.vtensor<[3],f32>

%0 = torch.operator "onnx.HardSigmoid"(%arg0) {torch.onnx.alpha = 5.000000e-01 : f32, torch.onnx.beta = 6.000000e-01 : f32} : (!torch.vtensor<[3],f32>) -> !torch.vtensor<[3],f32>
return %0 : !torch.vtensor<[3],f32>
}
Expand All @@ -916,18 +916,19 @@ func.func @test_hardsigmoid_example(%arg0: !torch.vtensor<[3],f32>) -> !torch.vt
func.func @test_hardsigmoid(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 6 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[ALPHA_FLOAT:.*]] = torch.constant.float 5.000000e-01
// CHECK: %[[BETA_FLOAT:.*]] = torch.constant.float 0.60000002384185791
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %arg0, %[[BETA_FLOAT:.*]], %[[ALPHA_FLOAT:.*]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[INT_1:.*]] = torch.constant.int 1
// CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[INT_0:.*]] = torch.constant.int 0
// CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[RESULT:.*]] = torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
// CHECK: return %[[RESULT:.*]] : !torch.vtensor<[3,4,5],f32>
%0 = torch.operator "onnx.HardSigmoid"(%arg0) {torch.onnx.alpha = 5.000000e-01 : f32, torch.onnx.beta = 6.000000e-01 : f32} : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
Expand All @@ -940,18 +941,19 @@ func.func @test_hardsigmoid(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtenso
func.func @test_hardsigmoid_default(%arg0: !torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 6 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[ALPHA_FLOAT:.*]] = torch.constant.float 0.20000000298023224
// CHECK: %[[BETA_FLOAT:.*]] = torch.constant.float 5.000000e-01
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %arg0, %[[BETA_FLOAT:.*]], %[[ALPHA_FLOAT:.*]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[INT_1:.*]] = torch.constant.int 1
// CHECK: %[[ALPHA_MULTI_X:.*]] = torch.aten.mul.Scalar %arg0, %[[ALPHA_FLOAT]] : !torch.vtensor<[3,4,5],f32>, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[F1:.*]] = torch.constant.float 1.000000e+00
// CHECK: %[[ALPHA_MULTI_X_PLUS_BETA:.*]] = torch.aten.add.Scalar %[[ALPHA_MULTI_X]], %[[BETA_FLOAT]], %[[F1]] : !torch.vtensor<[3,4,5],f32>, !torch.float, !torch.float -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ONE:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ONE:.*]] = torch.constant.int 6
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[INT_1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ONE_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ONE:.*]], %[[F1:.*]], %[[INT_TYPE_FOR_TENSOR_ONE:.*]], %[[NONE_FOR_ONE:.*]], %[[NONE_1:.*]], %[[NONE_1:.*]] : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[MIN_EXPRESSION:.*]] = torch.aten.minimum %[[ONE_TENSOR:.*]], %[[ALPHA_MULTI_X_PLUS_BETA:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
// CHECK: %[[INT_0:.*]] = torch.constant.int 0
// CHECK: %[[F0:.*]] = torch.constant.float 0.000000e+00
// CHECK: %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[NONE_FOR_ZERO:.*]] = torch.constant.none
// CHECK: %[[INT_TYPE_FOR_TENSOR_ZERO:.*]] = torch.constant.int 6
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[INT_0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.int, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: %[[ZERO_TENSOR:.*]] = torch.aten.full %[[TENSOR_DIMENSION_LIST_FOR_ZERO:.*]], %[[F0:.*]], %[[INT_TYPE_FOR_TENSOR_ZERO:.*]], %[[NONE_FOR_ZERO:.*]], %none_0, %none_0 : !torch.list<int>, !torch.float, !torch.int, !torch.none, !torch.none, !torch.none -> !torch.vtensor<[],f32>
// CHECK: torch.aten.maximum %[[ZERO_TENSOR:.*]], %[[MIN_EXPRESSION:.*]] : !torch.vtensor<[],f32>, !torch.vtensor<[3,4,5],f32> -> !torch.vtensor<[3,4,5],f32>
%0 = torch.operator "onnx.HardSigmoid"(%arg0) : (!torch.vtensor<[3,4,5],f32>) -> !torch.vtensor<[3,4,5],f32>
return %0 : !torch.vtensor<[3,4,5],f32>
Expand Down
Loading