Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa #3243

Merged
merged 3 commits into from
Apr 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 11 additions & 14 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainAtoF.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ static LogicalResult createTorchTransposeOp(ConversionPatternRewriter &rewriter,
int64_t dimA, int64_t dimB,
Value &transposed) {
Type transposedType;
if (failed(getTransposedType(input.getType().cast<Torch::BaseTensorType>(),
if (failed(getTransposedType(cast<Torch::BaseTensorType>(input.getType()),
dimA, dimB, transposedType)))
return failure();
Value cstDimA = rewriter.create<Torch::ConstantIntOp>(
Expand Down Expand Up @@ -554,7 +554,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
// conversions which are not supported in Torch-MLIR right now.

Torch::ValueTensorType targetTy =
target.getType().cast<Torch::ValueTensorType>();
cast<Torch::ValueTensorType>(target.getType());
if (!targetTy.hasDtype()) {
return rewriter.notifyMatchFailure(binder.op,
"target tensor must have a dtype");
Expand Down Expand Up @@ -753,9 +753,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.tensorResultType(resultType))
return failure();
Type listElemType =
tensors[0]
.getType()
.cast<Torch::BaseTensorType>()
cast<Torch::BaseTensorType>(tensors[0].getType())
.getWithSizesAndDtype(/*optionalSizes=*/std::nullopt,
/*optionalDtype=*/nullptr);
Type listType = Torch::ListType::get(listElemType);
Expand Down Expand Up @@ -869,7 +867,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.tensorResultType(resultType))
return failure();

auto weightTensorType = weight.getType().cast<Torch::ValueTensorType>();
auto weightTensorType = cast<Torch::ValueTensorType>(weight.getType());
if (!weightTensorType || !weightTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected weight type having sizes");
Expand Down Expand Up @@ -1188,7 +1186,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.tensorResultType(resultType))
return failure();

auto weightTensorType = weight.getType().cast<Torch::ValueTensorType>();
auto weightTensorType = cast<Torch::ValueTensorType>(weight.getType());
if (!weightTensorType || !weightTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected weight type having sizes");
Expand Down Expand Up @@ -1427,7 +1425,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
binder.customOpNameStringAttr(mode, "mode", "DCR") ||
binder.tensorResultType(resultType))
return failure();
auto inputTy = input.getType().dyn_cast<Torch::BaseTensorType>();
auto inputTy = dyn_cast<Torch::BaseTensorType>(input.getType());
if (!inputTy || !inputTy.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input type having sizes");
Expand Down Expand Up @@ -1536,9 +1534,9 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
Value scale = operands[1];
Value zeropoint = operands[2];

auto operandTy = operand.getType().cast<Torch::ValueTensorType>();
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());

auto scaleTy = scale.getType().dyn_cast<Torch::ValueTensorType>();
auto scaleTy = dyn_cast<Torch::ValueTensorType>(scale.getType());
if (!scaleTy || !scaleTy.hasSizes())
return rewriter.notifyMatchFailure(binder.op, "requires known rank");
if (!resultType.hasDtype())
Expand Down Expand Up @@ -1611,7 +1609,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
ratio = rewriter.create<Torch::AtenFloatImplicitOp>(loc, operands[1]);
Value trainVal = operands[2];
auto trainTensorType =
trainVal.getType().dyn_cast<Torch::BaseTensorType>();
dyn_cast<Torch::BaseTensorType>(trainVal.getType());
if (!trainTensorType)
return rewriter.notifyMatchFailure(binder.op,
"train tensor must have a type");
Expand All @@ -1629,8 +1627,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(

if (auto valueTensorLiteralOp =
trainVal.getDefiningOp<Torch::ValueTensorLiteralOp>()) {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseElementsAttr>()
auto val = cast<DenseElementsAttr>(valueTensorLiteralOp.getValue())
.getSplatValue<bool>();
trainingMode = rewriter.create<Torch::ConstantBoolOp>(loc, val);
} else {
Expand Down Expand Up @@ -2072,7 +2069,7 @@ void mlir::torch::onnx_c::populateDefaultDomainAtoF(
dyn_cast<Torch::ValueTensorType>(shape.getType()).getSizes();
SmallVector<Value> dimList;
Torch::BaseTensorType shapeType =
shape.getType().cast<Torch::BaseTensorType>();
cast<Torch::BaseTensorType>(shape.getType());
Type selectResultType = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({}), shapeType.getOptionalDtype());
Value zero = rewriter.create<Torch::ConstantIntOp>(
Expand Down
18 changes: 9 additions & 9 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -104,10 +104,10 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
return rewriter.notifyMatchFailure(
binder.op, "operand grid_sampler bind failure");

auto inputTensorType = input.getType().cast<Torch::ValueTensorType>();
auto inputTensorType = cast<Torch::ValueTensorType>(input.getType());
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
uint32_t inputRank = inputShape.size();
auto gridTensorType = grid.getType().cast<Torch::ValueTensorType>();
auto gridTensorType = cast<Torch::ValueTensorType>(grid.getType());
ArrayRef<int64_t> gridShape = gridTensorType.getSizes();
uint32_t gridRank = gridShape.size();

Expand Down Expand Up @@ -233,7 +233,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
axis = rank + axis;
}
// need input type and sizes to flatten/unflatten later.
auto inputTy = input.getType().cast<Torch::ValueTensorType>();
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
if (!inputTy || !inputTy.hasSizes())
return rewriter.notifyMatchFailure(
binder.op, "failed to get input type or sizes");
Expand Down Expand Up @@ -1065,7 +1065,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));

auto transpose = [&](Value m) -> Value {
auto tty = m.getType().cast<Torch::ValueTensorType>();
auto tty = cast<Torch::ValueTensorType>(m.getType());
auto shape = tty.getOptionalSizes();
if (shape.has_value()) {
llvm::SmallVector<int64_t> newShape(shape.value());
Expand Down Expand Up @@ -1134,7 +1134,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
binder.tensorResultType(resultType))
return failure();

auto inputTensorType = operand.getType().cast<Torch::ValueTensorType>();
auto inputTensorType = cast<Torch::ValueTensorType>(operand.getType());
if (!inputTensorType || !inputTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input type having sizes");
Expand Down Expand Up @@ -1228,7 +1228,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
rank = *maybeRank;
SmallVector<Value> normalized;
axis = Torch::toPositiveDim(axis, rank);
auto xType = x.getType().cast<Torch::ValueTensorType>();
auto xType = cast<Torch::ValueTensorType>(x.getType());
if (!xType.hasSizes()) {
return rewriter.notifyMatchFailure(
binder.op, "Expected input (X) to have sizes");
Expand Down Expand Up @@ -1307,7 +1307,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(

// Get pads shape and rank. The pads tensor is expected to be 1-D
// tensor.
auto padsTensorType = pads.getType().cast<Torch::ValueTensorType>();
auto padsTensorType = cast<Torch::ValueTensorType>(pads.getType());
if (!padsTensorType || !padsTensorType.hasSizes()) {
return rewriter.notifyMatchFailure(binder.op,
"Expect non empty pad tensor");
Expand All @@ -1323,7 +1323,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
// As per onnx.Pad documentation, padSize = 2*num_data_axes
// (if axes param not passed). Need to be updated when adding
// support for `axes` param.
auto dataOpTy = data.getType().cast<Torch::ValueTensorType>();
auto dataOpTy = cast<Torch::ValueTensorType>(data.getType());
TensorType dataTensor = dataOpTy.toBuiltinTensor();
if (!dataTensor || !dataTensor.hasRank())
return rewriter.notifyMatchFailure(
Expand All @@ -1350,7 +1350,7 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
}

if (!constantValue) {
auto dataTensorType = data.getType().cast<Torch::ValueTensorType>();
auto dataTensorType = cast<Torch::ValueTensorType>(data.getType());
if (dataTensorType.getDtype().isa<IntegerType>())
constantValue = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(0));
Expand Down
Loading
Loading