Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX][TorchToLinalg] Add support for dynamic dims in Interpolate lowering #3351

Merged
merged 4 commits into from
May 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 9 additions & 17 deletions lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2912,11 +2912,13 @@ class ConvertInterpolateOp
auto inputType = input.getType().cast<RankedTensorType>();
auto inputRank = inputType.getRank();

if (inputType.isDynamicDim(2) || inputType.isDynamicDim(3)) {
return rewriter.notifyMatchFailure(op, "error: Dynamic dim on resize op");
}

SmallVector<Value, 2> outputSizeIntValues;
Value inputSizeH = getDimOp(rewriter, loc, input, 2);
inputSizeH = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIntegerType(64), inputSizeH);
Value inputSizeW = getDimOp(rewriter, loc, input, 3);
inputSizeW = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIntegerType(64), inputSizeW);

if (!op.getScaleFactor().getType().isa<Torch::NoneType>()) {
SmallVector<Value, 2> ScaleFactorTorchFloat;
Expand All @@ -2927,8 +2929,6 @@ class ConvertInterpolateOp
SmallVector<Value, 2> ScaleFactorFloatValues;
ScaleFactorFloatValues = getTypeConvertedValues(
rewriter, loc, getTypeConverter(), ScaleFactorTorchFloat);
Value inputSizeH = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(inputType.getShape()[2]));
Value inputHFP = rewriter.create<arith::SIToFPOp>(
loc, rewriter.getF32Type(), inputSizeH);
Value scale = rewriter.create<arith::TruncFOp>(loc, inputHFP.getType(),
Expand All @@ -2938,8 +2938,6 @@ class ConvertInterpolateOp
outputH =
rewriter.create<arith::FPToSIOp>(loc, rewriter.getI64Type(), outputH);

Value inputSizeW = rewriter.create<arith::ConstantOp>(
loc, rewriter.getI64IntegerAttr(inputType.getShape()[3]));
Value inputWFP = rewriter.create<arith::SIToFPOp>(
loc, rewriter.getF32Type(), inputSizeW);
scale = rewriter.create<arith::TruncFOp>(loc, inputWFP.getType(),
Expand All @@ -2960,11 +2958,9 @@ class ConvertInterpolateOp
outputSizeIntValues = getTypeConvertedValues(
rewriter, loc, getTypeConverter(), outputSizeTorchInt);
}
int hDimOffset = 2;
SmallVector<Value> dims = getTensorSizes(rewriter, loc, input);
dims[hDimOffset] = castIntToIndex(rewriter, loc, outputSizeIntValues[0]);
dims[hDimOffset + 1] =
castIntToIndex(rewriter, loc, outputSizeIntValues[1]);
SmallVector<Value> dims = getTensorSizesUntilDim(rewriter, loc, input, 1);
dims.push_back(castIntToIndex(rewriter, loc, outputSizeIntValues[0]));
dims.push_back(castIntToIndex(rewriter, loc, outputSizeIntValues[1]));

Value outTensor = rewriter.create<tensor::EmptyOp>(
loc, getAsOpFoldResult(dims), inputType.getElementType());
Expand All @@ -2983,10 +2979,6 @@ class ConvertInterpolateOp
[&](OpBuilder &b, Location loc, ValueRange args) {
Value outputSizeH = outputSizeIntValues[0];
Value outputSizeW = outputSizeIntValues[1];
Value inputSizeH = b.create<arith::ConstantOp>(
loc, b.getI64IntegerAttr(inputType.getShape()[2]));
Value inputSizeW = b.create<arith::ConstantOp>(
loc, b.getI64IntegerAttr(inputType.getShape()[3]));
Value retVal;
if (mode == "nearest") {
retVal =
Expand Down
3 changes: 0 additions & 3 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -2607,9 +2607,6 @@
"BernoulliTensorModule_basic",
# Failure - onnx_lowering: onnx.ReduceProd
"ReduceProdDimIntFloatModule_basic",
# Failure - onnx_lowering: onnx.Resize
"UpSampleNearest2dDynamicSize_basic",
"UpSampleNearest2dStaticSize_basic",
# Failure - onnx_lowering: onnx.ScatterElements
"ScatterReduceFloatMaxModuleIncludeSelf",
"ScatterReduceFloatMinModuleIncludeSelf",
Expand Down
12 changes: 4 additions & 8 deletions test/Conversion/TorchToLinalg/resize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,13 @@
func.func @test_resize_sizes_linear(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1: !torch.vtensor<[4]
,si64>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[generic:.*]] = linalg.generic
// CHECK: %[[c2_i64:.*]] = arith.constant 2 : i64
// CHECK: %[[c4_i64:.*]] = arith.constant 4 : i64
// CHECK: %[[cst:.*]] = arith.constant 1.001000e+00 : f32
// CHECK: %[[cst_4:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[cst_5:.*]] = arith.constant 5.000000e-01 : f32
// CHECK: %[[cst_6:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[x13:.*]] = linalg.index 2 : index
// CHECK: %[[x14:.*]] = linalg.index 3 : index
// CHECK: %[[x15:.*]] = arith.sitofp %[[c2_i64]] : i64 to f32
// CHECK: %[[x15:.*]] = arith.sitofp %[[c2_i64:.*]] : i64 to f32
// CHECK: %[[x16:.*]] = arith.sitofp %[[x6:.*]] : i64 to f32
// CHECK: %[[x17:.*]] = arith.divf %[[x16]], %[[x15]] : f32
// CHECK: %[[x18:.*]] = arith.index_cast %[[x13]] : index to i64
Expand All @@ -23,7 +21,7 @@ func.func @test_resize_sizes_linear(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1:
// CHECK: %[[x23:.*]] = arith.maximumf %[[x22]], %[[cst_6]] : f32
// CHECK: %[[x24:.*]] = arith.subf %[[x15]], %[[cst]] : f32
// CHECK: %[[x25:.*]] = arith.minimumf %[[x23]], %[[x24]] : f32
// CHECK: %[[x26:.*]] = arith.sitofp %[[c4_i64]] : i64 to f32
// CHECK: %[[x26:.*]] = arith.sitofp %[[c4_i64:.*]] : i64 to f32
// CHECK: %[[x27:.*]] = arith.sitofp %[[x7:.*]] : i64 to f32
// CHECK: %[[x28:.*]] = arith.divf %[[x27]], %[[x26]] : f32
// CHECK: %[[x29:.*]] = arith.index_cast %[[x14]] : index to i64
Expand Down Expand Up @@ -96,12 +94,10 @@ func.func @test_resize_sizes_linear(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1:

func.func @test_resize_sizes_nearest(%arg0: !torch.vtensor<[1,1,2,4],f32>, %arg1: !torch.vtensor<[4],si64>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 19 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
// CHECK: %[[GENERIC:.*]] = linalg.generic
// CHECK: %[[c2_i64:.*]] = arith.constant 2 : i64
// CHECK: %[[c4_i64:.*]] = arith.constant 4 : i64
// CHECK: %[[x13:.*]] = linalg.index 2 : index
// CHECK: %[[x14:.*]] = linalg.index 3 : index
// CHECK: %[[x15:.*]] = arith.sitofp %[[c2_i64]] : i64 to f32
// CHECK: %[[x16:.*]] = arith.sitofp %[[c4_i64]] : i64 to f32
// CHECK: %[[x15:.*]] = arith.sitofp %[[c2_i64:.*]] : i64 to f32
// CHECK: %[[x16:.*]] = arith.sitofp %[[c4_i64:.*]] : i64 to f32
// CHECK: %[[x19:.*]] = arith.sitofp %[[x6:.*]] : i64 to f32
// CHECK: %[[x20:.*]] = arith.sitofp %[[x7:.*]] : i64 to f32
// CHECK: %[[x21:.*]] = arith.divf %[[x19]], %[[x15]] : f32
Expand Down
Loading