Skip to content

Commit

Permalink
Add documentation and examples to GoldiLocksFirstTry
Browse files Browse the repository at this point in the history
  • Loading branch information
mahmoudhanafy committed Jan 4, 2016
1 parent e6cd103 commit f4363e9
Showing 1 changed file with 141 additions and 67 deletions.
Original file line number Diff line number Diff line change
@@ -1,19 +1,19 @@
package com.highperformancespark.examples.goldilocks

import org.apache.spark.Partition
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.DataFrame
import org.apache.spark.storage.StorageLevel

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

import scala.collection.Map;
import scala.collection.mutable.MutableList;

object GoldiLocksGroupByKey {
//tag::groupByKey[]
def findRankStatistics(
pairRDD: RDD[(Int, Double)],
ranks: List[Long]): scala.collection.Map[Int, List[Double]] = {
ranks: List[Long]): Map[Int, List[Double]] = {
pairRDD.groupByKey().mapValues(iter => {
val ar = iter.toArray.sorted
ranks.map(n => ar(n.toInt))
Expand All @@ -25,42 +25,93 @@ object GoldiLocksGroupByKey {
//tag::firstTry[]
object GoldiLocksFirstTry {

def findQuantiles( dataFrame: DataFrame, targetRanks: List[Long] ) = {
val n = dataFrame.schema.length
val valPairs: RDD[(Double, Int)] = getPairs(dataFrame)
val sorted = valPairs.sortByKey()
sorted.persist(StorageLevel.MEMORY_AND_DISK)
val parts : Array[Partition] = sorted.partitions
val map1 = getTotalsForeachPart(sorted, parts.length, n )
val map2 = getLocationsOfRanksWithinEachPart(targetRanks, map1, n)
val result = findElementsIteratively(sorted, map2)
/**
* Find nth target rank for every column.
*
* For example:
*
* dataframe:
* (0.0, 4.5, 7.7, 5.0)
* (1.0, 5.5, 6.7, 6.0)
* (2.0, 5.5, 1.5, 7.0)
* (3.0, 5.5, 0.5, 7.0)
* (4.0, 5.5, 0.5, 8.0)
*
* targetRanks:
* 1, 3
*
* The output will be:
* 0 -> (0.0, 2.0)
* 1 -> (4.5, 5.5)
* 2 -> (7.7, 1.5)
* 3 -> (5.0, 7.0)
*
* @param dataFrame dataframe of doubles
* @param targetRanks the required ranks for every column
*
* @return map of (column index, list of target ranks)
*/
def findQuantiles(dataFrame: DataFrame, targetRanks: List[Long]):
Map[Int, Iterable[Double]] = {

val valueColumnPairs: RDD[(Double, Int)] = getValueColumnIndexPairs(dataFrame)
val sortedValueColumnPairs = valueColumnPairs.sortByKey()
sortedValueColumnPairs.persist(StorageLevel.MEMORY_AND_DISK)

val numOfColumns = dataFrame.schema.length
val partitionColumnsFreq = getColumnFreqPerPartition(sortedValueColumnPairs, numOfColumns)
val ranksLocations = getLocationsOfRanksWithinEachPart(targetRanks, partitionColumnsFreq, numOfColumns)
val result = findElementsIteratively(sortedValueColumnPairs, ranksLocations)
result.groupByKey().collectAsMap()
}

/**
* Step 1. Map the rows to pairs of (value, colIndex)
* @param dataFrame of double columns to compute the rank satistics for
* @return
* Step 1. Map the rows to pairs of (value, column Index).
*
* For example:
*
* dataFrame:
* 1.5, 1.25, 2.0
* 5.25, 2.5, 1.5
*
* The output RDD will be:
* (1.5, 0) (1.25, 1) (2.0, 2) (5.25, 0) (2.5, 1) (1.5, 2)
*
* @param dataFrame dateframe of doubles
*
* @return RDD of pairs (value, column Index)
*/
private def getPairs(dataFrame : DataFrame ): RDD[(Double, Int )] ={
dataFrame.flatMap( row => row.toSeq.zipWithIndex.map{ case (v, index ) =>
(v.toString.toDouble, index )})
private def getValueColumnIndexPairs(dataFrame : DataFrame): RDD[(Double, Int)] = {
dataFrame.flatMap(row => row.toSeq.zipWithIndex.map{ case (v, index) =>
(v.toString.toDouble, index)})
}

/**
* Step 2. Find the number of elements for each column in each partition
* @param sorted - the sorted (value, colIndex) pairs
* @param numPartitions
* @param n the number of columns
* @return an RDD the length of the number of partitions, where each row contains
* - the partition index
* - an array, totalsPerPart where totalsPerPart(i) = the number of elements in column
* i on this partition
* Step 2. Find the number of elements for each column in each partition.
*
* For Example:
*
* sortedValueColumnPairs:
* Partition 1: (1.5, 0) (1.25, 1) (2.0, 2) (5.25, 0)
* Partition 2: (7.5, 1) (9.5, 2)
*
* numOfColumns: 3
*
* The output will be:
* [(0, [2, 1, 1]), (1, [0, 1, 1])]
*
* @param sortedValueColumnPairs - sorted RDD of (value, column Index) pairs
* @param numOfColumns the number of columns
*
* @return Array that contains (partition index, number of elements from every column on this partition)
*/
private def getTotalsForeachPart(sorted: RDD[(Double, Int)], numPartitions: Int, n : Int ) = {
val zero = Array.fill[Long](n)(0)
sorted.mapPartitionsWithIndex((partitionIndex : Int, it : Iterator[(Double, Int)]) => {
val totalsPerPart : Array[Long] = it.aggregate(zero)(
private def getColumnFreqPerPartition(sortedValueColumnPairs: RDD[(Double, Int)], numOfColumns : Int):
Array[(Int, Array[Long])] = {

val zero = Array.fill[Long](numOfColumns)(0)

def aggregateColumnFrequencies (partitionIndex : Int, valueColumnPairs : Iterator[(Double, Int)]) = {
val totalsPerPart : Array[Long] = valueColumnPairs.aggregate(zero)(
(a : Array[Long], v : (Double ,Int)) => {
val (value, colIndex) = v
a(colIndex) = a(colIndex) + 1L
Expand All @@ -70,62 +121,85 @@ object GoldiLocksFirstTry {
require(a.length == b.length)
a.zip(b).map{ case(aVal, bVal) => aVal + bVal}
})

Iterator((partitionIndex, totalsPerPart))
}).collect()
}

sortedValueColumnPairs.mapPartitionsWithIndex(aggregateColumnFrequencies).collect()
}

/**
* Step 3: For each Partition determine the index of the elements that are desired rank statistics
* @param partitionMap- the result of the previous method
* @return an Array, the length of the number of partitions where each row contains
* - the partition index
* - a list, relevantIndexList where relevantIndexList(i) = the index of an element on this
* partition that matches one of the target ranks
*
* For Example:
* targetRanks: 5
* partitionColumnsFreq: [(0, [2, 3]), (1, [4, 1]), (2, [5, 2])]
* numOfColumns: 2
*
* The output will be:
* [(0, []), (1, [(0, 3)]), (2, [(1, 1)])]
*
* @param partitionColumnsFreq Array of (partition index, columns frequencies per this partition)
*
* @return Array that contains (partition index, relevantIndexList where relevantIndexList(i) = the index
* of an element on this partition that matches one of the target ranks)
*/
private def getLocationsOfRanksWithinEachPart(targetRanks : List[Long],
partitionMap : Array[(Int, Array[Long])], n : Int ) : Array[(Int, List[(Int, Long)])] = {
val runningTotal = Array.fill[Long](n)(0)
partitionMap.sortBy(_._1).map { case (partitionIndex, totals)=>
val relevantIndexList = new scala.collection.mutable.MutableList[(Int, Long)]()
totals.zipWithIndex.foreach{ case (colCount, colIndex) => {
partitionColumnsFreq : Array[(Int, Array[Long])], numOfColumns : Int) : Array[(Int, List[(Int, Long)])] = {

val runningTotal = Array.fill[Long](numOfColumns)(0)

partitionColumnsFreq.sortBy(_._1).map { case (partitionIndex, columnsFreq) =>
val relevantIndexList = new MutableList[(Int, Long)]()

columnsFreq.zipWithIndex.foreach{ case (colCount, colIndex) => {
val runningTotalCol = runningTotal(colIndex)
val ranksHere: List[Long] = targetRanks.filter(rank => (runningTotalCol < rank && runningTotalCol + colCount >= rank))

// for each of the rank statistics present add this column index and the index it will be at
// on this partition (the rank - the running total)
relevantIndexList ++= ranksHere.map(rank => (colIndex, rank - runningTotalCol))

runningTotal(colIndex) += colCount
val ranksHere = targetRanks.filter(rank =>
runningTotalCol <= rank && runningTotalCol + colCount >= rank
)
//for each of the rank statistics present add this column index and the index it will be
//at on this partition (the rank - the running total)
ranksHere.foreach(rank => {
relevantIndexList += ((colIndex, rank-runningTotalCol))
})
}}

(partitionIndex, relevantIndexList.toList)
}
}

/**
* Step4: Using the results of the previous method, scan the data and return the elements
* which correspond to the rank statistics we are looking for in each column
*/
private def findElementsIteratively(sorted : RDD[(Double, Int)], locations : Array[(Int, List[(Int, Long)])]) = {
sorted.mapPartitionsWithIndex((index : Int, it : Iterator[(Double, Int)]) => {
val targetsInThisPart = locations(index)._2
val len = targetsInThisPart.length
if (len > 0) {
val partMap = targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))
val keysInThisPart = targetsInThisPart.map(_._1).distinct
* Finds rank statistics elements using ranksLocations.
*
* @param sortedValueColumnPairs - sorted RDD of (value, colIndex) pairs
* @param ranksLocations Array of (partition Index, list of (column index, rank index of this column at this partition))
*
* @return
*/
private def findElementsIteratively(sortedValueColumnPairs : RDD[(Double, Int)],
ranksLocations : Array[(Int, List[(Int, Long)])]): RDD[(Int, Double)] = {

sortedValueColumnPairs.mapPartitionsWithIndex((partitionIndex : Int, valueColumnPairs : Iterator[(Double, Int)]) => {
val targetsInThisPart: List[(Int, Long)] = ranksLocations(partitionIndex)._2
if (!targetsInThisPart.isEmpty) {
val columnsRelativeIndex: Map[Int, List[Long]] = targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))
val columnsInThisPart = targetsInThisPart.map(_._1).distinct

val runningTotals : mutable.HashMap[Int, Long]= new mutable.HashMap()
keysInThisPart.foreach(key => runningTotals+=((key, 0L)))
val newIt : ArrayBuffer[(Int, Double)] = new scala.collection.mutable.ArrayBuffer()
it.foreach{ case( value, colIndex) => {
if(runningTotals isDefinedAt colIndex){
runningTotals ++= columnsInThisPart.map(columnIndex => (columnIndex, 0L)).toMap

val result : ArrayBuffer[(Int, Double)] = new scala.collection.mutable.ArrayBuffer()

valueColumnPairs.foreach{ case(value, colIndex) => {
if (runningTotals isDefinedAt colIndex) {
val total = runningTotals(colIndex) + 1L
runningTotals.update(colIndex, total)
if(partMap(colIndex).contains(total)){
newIt += ((colIndex,value ))
}

if (columnsRelativeIndex(colIndex).contains(total))
result += ((colIndex, value))
}
}}
newIt.toIterator

result.toIterator
}
else {
Iterator.empty
Expand Down

0 comments on commit f4363e9

Please sign in to comment.