-
Notifications
You must be signed in to change notification settings - Fork 43
cameo mutant fba
Maurice HT Ling edited this page May 31, 2020
·
2 revisions
Synopsis: Simulate a model after adding mutation(s) using Flux Balance Analysis (FBA), with Cameo.
Usage: python astools.py cameo-mutant-fba [option]
where [option]
can be
-
model
: Model acceptable by Cameo (see http://cameo.bio/02-import-models.html). -
mutation
: String to define mutation(s). Each mutation is defined as<reaction ID>:<upper bound>:<lower bound>
. For example, RBFK,0,0 will represent a knock out. Multiple mutations are delimited using semicolon. -
result_type
: Type of result to give. Allowable types are objective (objective value from FBA) or flux (table of fluxes). Default value = objective.
For example:
python astools.py cameo-mutant-fba \
--model=iJO1366 \
--mutation=NNAM,100,0;RBFK,0,0 \
--result_type=objective
Working example:
D:\Dropbox\MyProjects\astoolkit>python astools.py cameo-mutant-fba --model=iJO1366 --mutation=NNAM,100,0;RBFK,0,0 --result_type=objective
C:\Users\mauri\.conda\envs\py37\lib\site-packages\cameo\visualization\plotting\__init__.py:52 UserWarning: Cannot import any plotting library. Please install one of 'plotly', 'bokeh' or 'ggplot' if you want to use any plotting function.
This operation uses Cameo (https://github.com/biosustain/cameo). If you used it in your study, please cite: Cardoso, J.G., Jensen, K., Lieven, C., Lærke Hansen, A.S., Galkina, S., Beber, M., Ozdemir, E., Herrgård, M.J., Redestig, H. and Sonnenschein, N., 2018. Cameo: a Python library for computer aided metabolic engineering and optimization of cell factories. ACS synthetic biology, 7(4), pp.1163-1166.
Load model: iJO1366
Process mutation(s) ...
Metabolite NNAM found
... Upper Bound: 1000.0 --> 100
... Lower Bound: 0.0 --> 0
Metabolite RBFK found
... Upper Bound: 1000.0 --> 0
... Lower Bound: 0.0 --> 0
Run flux balance analysis on model iJO1366
Objective value = 22.995000000000005
Copyright (c) 2018-2022, AdvanceSyn Pte. Ltd.