Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
mcychan authored Mar 4, 2023
1 parent e74169f commit 95b4239
Show file tree
Hide file tree
Showing 2 changed files with 21 additions and 56 deletions.
75 changes: 20 additions & 55 deletions algorithm/NsgaIII.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,16 +53,6 @@ def __init__(self, M):
self.position = np.zeros(M)
self._potentialMembers = {}

@staticmethod
def generateRecursive(rps, pt, numObjs, left, total, element):
if element == numObjs - 1:
pt.position[element] = left * 1.0 / total
rps.append(pt)
else:
for i in range(left + 1):
pt.position[element] = i * 1.0 / total
NsgaIII.ReferencePoint.generateRecursive(rps, pt, numObjs, left - i, total, element + 1)

def addMember(self):
self.memberSize += 1

Expand Down Expand Up @@ -94,12 +84,21 @@ def removePotentialMember(self, memberInd):

@staticmethod
def generateReferencePoints(rps, M, p):
def generateRecursive(rps, pt, numObjs, left, total, element):
if element == numObjs - 1:
pt.position[element] = left / total
rps.append(pt)
else:
for i in range(left + 1):
pt.position[element] = i / total
generateRecursive(rps, pt, numObjs, left - i, total, element + 1)

pt = NsgaIII.ReferencePoint(M)
NsgaIII.ReferencePoint.generateRecursive(rps, pt, M, p[0], p[0], 0)
generateRecursive(rps, pt, M, p[0], p[0], 0)

if len(p) > 1: # two layers of reference points (Check Fig. 4 in NSGA-III paper)
insideRps = []
NsgaIII.ReferencePoint.generateRecursive(insideRps, pt, M, p[1], p[1], 0)
generateRecursive(insideRps, pt, M, p[1], p[1], 0)

center = 1.0 / M
for insideRp in insideRps:
Expand All @@ -111,18 +110,13 @@ def generateReferencePoints(rps, M, p):


def perpendicularDistance(self, direction, point):
numerator, denominator = 0, 0
for i, dir in enumerate(direction):
numerator += dir * point[i]
denominator += dir ** 2
numerator, denominator = np.sum(direction * point), np.sum(direction ** 2)

if denominator <= 0:
return sys.float_info.max

k, d = numerator / denominator, 0
for i, dir in enumerate(direction):
d += (k * dir - point[i]) ** 2

k = numerator / denominator
d = np.sum((k * direction - point) ** 2)
return np.sqrt(d)

def associate(self, rps, pop, fronts):
Expand All @@ -139,25 +133,6 @@ def associate(self, rps, pop, fronts):
else:
rps[minRp].addPotentialMember(memberInd, minDist)

def guassianElimination(self, A, b):
N = len(A)
for i in range(N):
A[i].append(b[i])

for base in range(N - 1):
for target in range(base + 1, N):
ratio = A[target][base] / A[base][base]
for term in range(len(A[base])):
A[target][term] -= A[base][term] * ratio

x = np.zeros(N)
for i in range(N - 1, -1, -1):
for known in range(i + 1, N):
A[i][N] -= A[i][known] * x[known]

x[i] = A[i][N] / A[i][i]

return x

# ASF: Achivement Scalarization Function
def ASF(self, objs, weight):
Expand Down Expand Up @@ -228,11 +203,9 @@ def constructHyperplane(self, pop, extremePoints):
intercepts, negativeIntercept = [], False
if not duplicate:
# Find the equation of the hyperplane
b, A = np.ones(numObj), [[] * len(extremePoints)]
for p, extremePoint in enumerate(extremePoints):
A[p] = pop[extremePoint].convertedObjectives
b, A = np.ones(numObj), [pop[extremePt].convertedObjectives for extremePt in extremePoints]
x = np.linalg.solve(A, b)

x = self.guassianElimination(A, b)
# Find intercepts
for f in range(numObj):
intercepts.append(1.0 / x[f])
Expand All @@ -251,11 +224,7 @@ def normalizeObjectives(self, pop, fronts, intercepts, idealPoint):
for front in fronts:
for i, ind in enumerate(front):
convObjs = pop[ind].convertedObjectives
for f, convObj in enumerate(convObjs):
if abs(intercepts[f] - idealPoint[f]) > np.finfo(float).eps: # avoid the divide-by-zero error
convObj /= intercepts[f] - idealPoint[f]
else:
convObj /= np.finfo(float).eps
convObjs /= intercepts - idealPoint + np.finfo(float).eps


def nondominatedSort(self, pop):
Expand Down Expand Up @@ -311,14 +280,11 @@ def translateObjectives(self, pop, fronts):
for front in fronts:
for ind in front:
pop[ind].resizeConvertedObjectives(numObj)
convertedObjectives = pop[ind].convertedObjectives
convertedObjectives[f] = pop[ind].objectives[f] - minf
pop[ind].convertedObjectives[f] = pop[ind].objectives[f] - minf

return idealPoint

def selection(self, cur, rps):
next = []

# ---------- Step 4 in Algorithm 1: non-dominated sorting ----------
fronts = self.nondominatedSort(cur)

Expand All @@ -329,10 +295,9 @@ def selection(self, cur, rps):
last += 1

fronts = fronts[: last] # remove useless individuals

next = []
for t in range(len(fronts) - 1):
for frontIndv in fronts[t]:
next.append(cur[frontIndv])
next += [ cur[frontIndv] for frontIndv in fronts[t] ]

# ---------- Steps 9-10 in Algorithm 1 ----------
if len(next) == self._populationSize:
Expand Down
2 changes: 1 addition & 1 deletion model/Schedule.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,7 +416,7 @@ def objectives(self):
return self._objectives

def resizeConvertedObjectives(self, numObj):
self._convertedObjectives = numObj * [0]
self._convertedObjectives = np.zeros(numObj)

def clone(self):
return self.copy(self, False)
Expand Down

0 comments on commit 95b4239

Please sign in to comment.