gogs is a simple, fast and lightweight game server framework written in golang. It is designed to be easy to use and easy to extend. It will generate logic code from protobuf files, and you can use it to develop your game server. It's also a good starting point for you to learn golang. It supports websocket and webrtc datachannel.
- Support metrics
- Support generate Unity C# SDK
- Support generate JS SDK
- Support generate Golang SDK
- Support Remote call
- Support tracing
- Support gogs generate docker file
- Support gogs generate k8s yaml
- Support custom game packet protocol
- Support kubegame controller, create game pod with api
- Add more examples
- Add more tests
- Add more documentation
- Test coverage reaches 80%
- k8s friendly, hot reload?
install the gogs
go install github.com/metagogs/gogs/tools/[email protected]
init project
mkdir yourgame
cd yourgame
gogs init -p yourgame
Flags:
-p your go package name
edit your proto, add the game message, then generate the code
gogs go -f data.proto
Flags:
-f proto file path
run your game server
go mod tidy
go run main.go
internal/
logic/
baseworld/
bind_user_logic.go
server/
server.go
svc/
service_context.go
model/
data.ep.go
data.pb.go
config.yaml
data.proto
main.go
this will generate a unity code, you can use it to test your game server. And you need use the Unity Protobuf to run the code.
gogs csharp -f data.proto
Flags:
-f proto file path
-g generate unity c# gogs library, you should use it when you generate code first time
gogo docker // generate Dockerfile
go run main --deployment // generate k8s yaml
--svc use service to expose your game server not hostport
--name your game server name
--namepsace your k8s namespace
gogs uses 8 bytes as the protocol header
protocol header = flag + version + action index + message data length
0 byte flag 8bit protocol flag, awalys 0x7E
1 byte version 5bit protocel version
encodeType 3bit protocel encode type
2 byte packetType 2bit packet message type 1 system 2 server
component 6bit message component index
3.4 byte action 16bit message action index
5.6.7 byte length 24bit message length
action index = packetType + component index + action index
// @gogs:Components
message Components {
BaseWorld BaseWorld = 1; // 1 is the component index
}
message BaseWorld {
BindUser BindUser = 1; // 1 is the action index
BindSuccess BindSuccess = 2; // 2 is the action index
}
message BindUser {
string uid = 1;
}
// @gogs:ServerMessage
message BindSuccess {
}
like this proto, the BindUser and BindSuccess is the message comunication between client and server
BindUser action index = packetType <<22 | component <<16 | action = 2 << 22 | 1 << 16 | 1 = 0x810001
BindSuccess action index = packetType <<22 | component <<16 | action = 2 << 22 | 1 << 16 | 2 = 0x810002
gogs has three encode&decode types - encodeType in protocol header
- 0 json encode&decode without protocol header
- 1 json encode&decode with protocol header
- 2 protobuf encode&decode with protocol header
message with encode type 0 (json without protocol header)
message = JSON binary data
gogs retrieves the action index from the message, then gets the filed type and decodes the message, finally it calls the logic function. The json message without protocol header should add a filed named action, the value is the filed name
{
"action": "BindUser",
"uid": "123"
}
app.UseDefaultEncodeJSONWithHeader()
message with encode type 1 (json with protocol header)
message = 8 bytes protocol header + JSON binary data
app.UseDefaultEncodeJSON()
message with encode type 2 (protobuf with protocol header)
message = 8 bytes protocol header + protobuf binary data
app.UseDefaultEncodeProto()
make test
This command will run both unit and e2e tests.