Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pytorch dataset #2362

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "73d012de",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import torchvision\n",
"import numpy as np\n",
"import pandas as pd\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import pickle\n",
"\n",
"from fastai.vision.all import *\n",
"\n",
"from PIL import Image\n",
"from torchvision.transforms import ToTensor\n",
"from responsibleai_vision.common.constants import ImageColumns\n",
"from tqdm import tqdm\n",
"\n",
"BATCH_SIZE = 4\n",
"DATASET_NAME = \"CIFAR\"\n",
"\n",
"dataset = torchvision.datasets.CIFAR10(root=\"data\", train=False, download=True, transform=ToTensor())\n",
"data_loader = torch.utils.data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)\n",
"\n",
"def convert_torch_model(model, df, train=False):\n",
" dls = ImageDataLoaders.from_df(df, path='./')\n",
" learn = Learner(dls, model)\n",
" \n",
" if train:\n",
" xb,yb = learn.dls.one_batch()\n",
" init_loss = learn.loss_func(learn.model(xb), yb)\n",
" learn.fit_one_cycle(10)\n",
" xb,yb = learn.dls.one_batch()\n",
" final_loss = learn.loss_func(learn.model(xb), yb)\n",
" print(final_loss)\n",
" \n",
" return learn\n",
" \n",
" \n",
"def convert_torch_data(data_loader):\n",
" \n",
" data = pd.DataFrame(columns=[ImageColumns.IMAGE.value,\n",
" ImageColumns.LABEL.value])\n",
"\n",
" cnts = {}\n",
" data_path = \"data/\" + DATASET_NAME + \"/\" \n",
" \n",
" for batch in tqdm(data_loader):\n",
" \n",
" images, labels = batch\n",
" for i in range(BATCH_SIZE):\n",
" img, label = images[i], labels[i]\n",
" label = str(label.numpy())\n",
" img = img.numpy()\n",
" img = np.transpose(img, (1, 2, 0))\n",
" img = Image.fromarray((img * 255).astype(np.uint8))\n",
"\n",
" if label not in cnts:\n",
" os.makedirs(data_path + label, exist_ok=True)\n",
" cnts[label] = 1\n",
" else:\n",
" cnts[label] += 1\n",
"\n",
" img_path = data_path + label + \"/class_\" + label + \"_img_\" + str(cnts[label]) + \".jpeg\"\n",
" img.save(img_path)\n",
" item = pd.DataFrame(data={ImageColumns.IMAGE.value: [img_path], \n",
" ImageColumns.LABEL.value: [label]})\n",
" data = pd.concat([data, item], ignore_index=True)\n",
" \n",
" return data\n",
"\n",
"data = convert_torch_data(data_loader)\n",
"\n",
"test_data = data\n",
"class_names = data[ImageColumns.LABEL.value].unique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87572a47",
"metadata": {},
"outputs": [],
"source": [
"device = 'cuda'\n",
"\n",
"class CNN(nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.conv1 = nn.Conv2d(3, 6, 5)\n",
" self.pool = nn.MaxPool2d(2, 2)\n",
" self.conv2 = nn.Conv2d(6, 16, 5)\n",
" self.fc1 = nn.Linear(16 * 5 * 5, 120)\n",
" self.fc2 = nn.Linear(120, 84)\n",
" self.fc3 = nn.Linear(84, 10)\n",
"\n",
" def forward(self, x):\n",
" x = self.pool(F.relu(self.conv1(x)))\n",
" x = self.pool(F.relu(self.conv2(x)))\n",
" x = torch.flatten(x, 1)\n",
" x = F.relu(self.fc1(x))\n",
" x = F.relu(self.fc2(x))\n",
" x = self.fc3(x)\n",
" return x\n",
"\n",
"model = CNN().to(device)\n",
"\n",
"model = convert_torch_model(model, data, train=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b9184ef",
"metadata": {},
"outputs": [],
"source": [
"from raiwidgets import ResponsibleAIDashboard\n",
"from responsibleai_vision import ModelTask, RAIVisionInsights\n",
"\n",
"rai_insights = RAIVisionInsights(model, data.sample(10, random_state=42),\n",
" \"label\", task_type=ModelTask.IMAGE_CLASSIFICATION,\n",
" classes=class_names)\n",
"rai_insights.explainer.add()\n",
"rai_insights.error_analysis.add()\n",
"rai_insights.compute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4cb92832",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"ResponsibleAIDashboard(rai_insights)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}